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Motivation

Constrained/safe RL restricting expected cumulative costs cannot tell the persistent safety.

Enough space Too close
to decelearate doomed to crash

We propose to constrain the worst-case violation to characterize persistently safe states.

o Once the worst case is safe, the whole trajectory is safe



Safety value function
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Definition: The worst-case state constraint violation h(s) during a trajectory induced by policy .

State space §
P Vi(s) = max h(sy) |So =S,

Safe set {s|h(s) < 0}

Reachability constraint:
ViF(s) <0

if satisfied: <— \What we want

persistently safe
else if violated:

unsafe sooner or later




Safety value function - computation

We extend results in [Fisac et al., 2019] to a general bootstrap form of safety value function.

State space §

Safe set {s|h(s) < 0} _ N
Self-consistency condition:

ViE(s) = max{h(s), VI (s")}

J. Fisac, et al. Bridging Hamilton-Jacobi Safety Analysis and Reinforcement Learning. ICRA 2019



Reachability Constrained RL

Problem Formulation Lagrangian-based solution with multiplier

network [Ma et al., 2021]
max) () = Bs-q, [V (5) - Tses, = ViF(5) - Tsgs,

s.t. Vi¥(s) < 0V possibly feasible initial state » maxmin Eg_g [V7(s) + A(s; E)ViE(s)]
6
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Constraints on each state A(s; €): mapping from state to

multiplier
Difference with CMDP-based Constrained RL

C(n) =E,., {Z ytct} » max mein](ng) + AC(mp)

t=0

Constraints on a trajectory Ais a scalar

H. Ma, et, al. Feasible Actor-Critic: Constrained Reinforcement Learning for Ensuring Statewise Safety. arXiv:2105.10682



Experiments - safe-control-gym

2D Quadrotors tracking while maintaining safe height
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® SAC-Lagrangian: CMDP-based X Unsafe policy
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® SAC-CBF/SI X CBF: safe but not moving / Sl: unsafe policy



Experiments - safe-control-gym

Safety value function visualizations

Z - quadrotor vertical speed

RCRL has the largest safe sets
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Conclusion

We propose a novel reachability constraint to characterize the persistent safety of policies

RCRL can converge to a zero-violation policy with competitive reward performance

o Because the learned safe value can find those persistently safe states

For more details, please see our paper: https://arxiv.org/abs/2205.07536

Open-sourced implementation:

https://github.com/mahaitongdae/Reachability Constrained RL
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