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Introduction
What is retrosynthesis? Why is it important?

• Major building blocks in organic synthesis


• Aims to discover valid and efficient synthetic routes for a target molecule (e.g., drug)


• Computer-aided synthesis planning to save time and efforts


• Single-step retrosynthesis prediction + Multi-step retrosynthesis planning

Reactants?

(Predict the reactants given the product) (Recursively expand the reaction tree with search algorithm)



Existing works
Template-based Template-free Semi-template-based

Framework

Pros - High validity and accuracy - Explore larger chemical space 
(novelty) 

- Follow chemists’ intuition

- Explore relatively larger chemical space

Cons - Limited chemical space - Less satisfactory accuracy and validity

- Lack interpretability

- Dependency on RDKit for molecule editing

- Cannot do end-to-end learning

- Complexity can be high
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Retroformer
• We tailor a novel Transformer model that mimics the semi-template-based workflow 

while walking around its disadvantages. 


• Local-global encoder (Graph Transformer): jointly encodes the SMILES and topology of the molecule

‣ Inputs: topological structure with molecule SMILES 

‣ Outputs: updated token representation  and updated edge representation 


• Reaction center detection: predicts the reaction center

‣ Inputs:  and 

‣ Outputs: reactive probability of each atom and bond, then convert to reactive region 


• Local-global decoder (conditional decoder): generate the reactants

‣ Inputs:  and reaction center 

‣ Outputs: reactants SMILES
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• Local-global attention head:

‣ Encoder: local topological structure of atoms and bonds


‣ Decoder: local reactive region

Retroformer

Global (vanilla) self-attention head Local self-attention head Edge update

Local cross-attention headGlobal (vanilla) cross-attention head

Yellow highlight: local-global difference



• Reaction center detection

‣ Probability of atoms and bonds belonging to the reaction center


‣ End-to-end training: generative feedback from the decoder will backpropagate to reaction center detection 

Retroformer

Convert  into Prc( . ) Src

‣ Approach #1: naively using a cutoff (e.g., p=0.5)

‣ Approach #2: subgraph search + rank by total 

reactive scores (sum of log prob)



Retroformer

• SMILES alignment:

‣ Atom alignment => token alignment

‣ Additional task: learn guided attention to the context attention module in the decoder


• Data augmentation [6,7,9]: 

‣ Same molecule can be represented by multiple different SMILES

‣ In addition to the canonical form, add permuted SMILES into the training database

‣ Our implementation:


‣ In each iteration, randomly permute the canonical SMILES by 50% chance



Experiments

• Dataset: USPTO50K [13], atom-mapped reactions with labeled reaction type


• Baselines: 2 (template-based) + 6 (template-free) + 5 (semi-template-based) = 13

‣ Retroformerbase: model without data augmentation

‣ Retroformeraug: model with data augmentation

‣ Retroformeraug+: model with data augmentation and reaction center subgraph search


• Metrics: 

‣ Top-k accuracy

‣ Top-k SMILES (molecule) validity

‣ Top-k round-trip accuracy [14] (reaction validity): the percentage of predicted reactants that can lead 

back to the original product; a proxy for reaction validity

‣

Dataset, baselines, & metrics



Experiments
Top-k accuracy

• In both settings (reaction class 
known/unknown), Retroformer 
surpasses all the template-free 
baselines. 


• Also competitive to the semi-
template-based methods.


• Unfortunately, still cannot beat 
the SOTA template-based 
methods. 



Experiments
Smiles validity & round-trip accuracy

• Compared with the template-free SMILES generative baselines


• Better molecule validity and “reaction validity”



Experiments
Ablations
• All components are necessary for reaching 

the best performance



Conclusions

• We propose Retroformer, a novel Transformer-based architecture for retrosynthesis


• Reaches the state-of-the-art performance for template-free retrosynthesis, with better 
accuracy, validity, interpretability.


• In the future, we plan to: 


‣ Study the diversity issue of SMILES generative models. 

‣ Study the multi-step retrosynthesis planning problem using Retroformer as single-step backbone.

Code: https://github.com/yuewan2/Retroformer

https://github.com/yuewan2/Retroformer
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