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Introduction

What is retrosynthesis? Why is it important?

* Major building blocks in organic synthesis
* Aims to discover valid and efficient synthetic routes for a target molecule (e.g., drug)
 Computer-aided synthesis planning to save time and efforts

* Single-step retrosynthesis prediction + Multi-step retrosynthesis planning
(Predict the reactants given the product) (Recursively expand the reaction tree with search algorithm)
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Template-based

Template-free

Semi-template-based

¢ MLP 2], GNN 3], ...

product

Trans. [9], GNN [10-12]

template reaction centers
database (Encoder-decoder)
Transformer [4-7]
Framework * Graph-to-sequence [8]
RDKit
top-k templates top-n synthons
RDKit [1] Trans. [9,10], GNN [11,12]
top-k reactants top-k reactants top-k reactants
Retrieval Generative Retrieval / Generative
Pros - High validity and accuracy - Explore larger chemical space - Follow chem_lsts Intuition |
(novelty) - Explore relatively larger chemical space
_ Less satisfactorv accuracy and validity |- Dependency on RDKIit for molecule editing
Cons - Limited chemical space 'y y Y|~ Cannot do end-to-end learning

- Lack interpretability

- Complexity can be high
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Retroformer

 We tailor a novel Transformer model that mimics the semi-template-based workflow
while walking around its disadvantages.

* |ocal-global encoder (Graph Transformer): jointly encodes the SMILES and topology of the molecule
> Inputs: topological structure with molecule SMILES §
> Qutputs: updated token representation /1 and updated edge representation A
 Reaction center detection: predicts the reaction center
> |nputs: i and A
> Outputs: reactive probability of each atom and bond, then convert to reactive region S,
* Local-global decoder (conditional decoder): generate the reactants CC(=0)0C(C)=0.NclcoccctF
> Inputs: h and reaction center S, .. Y @NH)

> Qutputs: reactants SMILES
& X g Local-Global
' Decoder

CC(=0O)Nc1ccccc1F <sos>CC(=0)OC(C)=0.Nc1ccccc1
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Retroformer

Local-global attention head:

> Encoder: local topological structure of atoms and bonds

l S o0k
+1 . )
L global 0( \/]E )Uj

S j eSs
(qi, ki, v5] = [ALWE, hsWE REWY ]

Global (vanilla) self-attention head

> Decoder: local reactive region

I+1 qz-ij
Yi global — Z 0( \/8 )Uj

SjES

(4, ki, v5] = [gW O, g WE gt WV

Global (vanilla) cross-attention head

g (AL @ k)T
legl—i_llocal: Z J( ]\/E : )vj

FEN (i)
4, kj,v;] = (AW, REWE WY ]

Local self-attention head

I+1 Qiij
yi+ local — Z 0( \/C—Z )vj

Sy ESrc

4, kj,v5] = (W, bW ;WY ]

Local cross-attention head

hl+1 = Linear([ml+1gzobal; xl+1local])

Agjl = AL + FFN([h,t; hg.“])

Edge update

Yellow highlight: local-global difference



Retroformer

* Reaction center detection
> Probability of atoms and bonds belonging to the reaction center

Prc(si) = U(FFNatom(hi))a S; € Vm

I Convert P, (.) into S,.
e ) U(FFNbond(Aij))a €ij € by v
> Approach #1: naively using a cutoff (e.g., p=0.5)

> Approach #2: subgraph search + rank by total
reactive scores (sum of log prob)

> End-to-end training: generative feedback from the decoder will backpropagate to reaction center detection



Retroformer

Product
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 SMILES alignment:

> Atom alignment => token alignment
> Additional task: learn guided attention to the context attention module in the decoder

 Data augmentation 5,79

> Same molecule can be represented by multiple different SMILES

> In addition to the canonical form, add permuted SMILES into the training database
> Our implementation:

> In each iteration, randomly permute the canonical SMILES by 50% chance



Experiments

Dataset, baselines, & metrics

e Dataset: USPTOS0K 3, atom-mapped reactions with labeled reaction type

 Baselines: 2 (template-based) + 6 (template-free) + 5 (semi-template-based) = 13

> Retroformeroase: model without data augmentation
> Retroformeraug: model with data augmentation
> Retroformeraug+: model with data augmentation and reaction center subgraph search

e Metrics:

> Top-k accuracy
> Top-k SMILES (molecule) validity

> Top-k round-trip accuracy [14] (reaction validity): the percentage of predicted reactants that can lead
back to the original product; a proxy for reaction validity



Experiments
Top-k accuracy

In both settings (reaction class
known/unknown), Retroformer
surpasses all the template-free
baselines.

Also competitive to the semi-
template-based methods.

Unfortunately, still cannot beat
the SOTA template-based
methods.

Top-k accuracy (%)

Model Reaction class known Reaction class unknown
1 3 5 10 1 3 5 10

Template-Based
GLN (Dai et al., 2019) 642 79.1 852 90.0 525 69.0 756 83.7
LocalRetro (Chen & Jung, 2021) 639 868 924 96.3 534 775 859 924
Template-Free
Transformer 571 715 75.0 77.7 424 58.6 638 67.7
SCROP (Zheng et al., 2020) 500 748 78.1 8l1.1 437 60.0 65.2 68.7
Tied Transformer (Kim et al., 2021) - - - - 47.1 67.1 73.1 76.3
Aug. Transformer* (Tetko et al., 2020) - - - - 48.3 - 73.4 774
GTA* (Seo et al., 2021) - - - - 51.1 676 748 81.6
Graph2SMILES (Tu & Coley, 2021) - - - - 529 665 70.0 729
Retroformery,se (Ours) 615 78.3 820 849 479 629 66.6 70.7
Retroformer,, * (Ours) 640 818 854 88.3 529 682 725 764
Retroformer,,+* (Ours) 64.0 825 86.7 90.2 53.2 711 76.6 82.1
Semi-Template-Based
RetroXpert* (Yan et al., 2020) 62.1 758 785 809 504 61.1 623 634
G2G (Shi et al., 2020) 61.0 &81.3 86.0 88.7 489 67.6 725 755
GraphRetro (Somnath et al., 2020) 63.9 81.5 85.2 88.1 53.7 683 722 755
RetroPrime* (Wang et al., 2021) 648 81.6 850 869 514 708 74.0 76.1
MEGAN (Sacha et al., 2021) 60.7 82.0 87.5 91.6 48.1 70.7 784 86.1




Experiments

Smiles validity & round-trip accuracy

Table 2: Top-k SMILES val

1dity for retrosynthesis predic-

tion on USPTO-50K with reaction class unknown.

Model

Top-k validity (%)

1 3 5 10
Transformer 972 879 824 73.1
Graph2SMILES 994 909 849 749
RetroPrime 989 982 97.1 925
Retroformer,,, 99.3 985 97.2 92.6
Retroformery o+ 99.2 985 974 96.7

 Compared with the template-free SMILES generative baselines

Table 3: Top-k round-trip accuracy for retrosynthesis pre-

diction on USPTO-50K with reaction class unknown.

Top-k round-trip acc. (%)

Model 1 3 5 10
Transformer 71.9 5477 46.2 35.6
Graph2SMILES 76.7 56.0 464 3409
RetroPrime 796 59.6 50.3 404
Retroformer,y, 786 71.8 671 57.6
Retroformer,,,+ 789 72.0 67.1 57.2

 Better molecule validity and “reaction validity”



Experiments

Table 5: Effects of local-global encoder, reaction center
search, and data augmentation on reaction center detection

AblClthn S performance. Ablation (c) corresponds to Retroformery;se.
» All components are necessary for reaching Settings 1 Top-n Accuracy (%2) :

the best performance

Ablation (d) 554 +search 71.6 84.1 899
Ablation (¢)  63.0 +search 75.8 882 913
Retroformer,,, 67.5 +search 793 90.0 929

Table 4: Effects of different components on retrosynthesis performance with reaction class unknown.

Settings Modules Top-k accuracy (%)
: : Local-global Local-global Reaction

Guided;as  Guideda Encogder Decfder Center Search : 3 . 10
(a) v v 455 60.7 654 699
(b) v vV v 470 63.1 669 71.1
(c) v v v 479 629 66.6 70.7
(d) v Vv 44,1 60.1 64.7 70.2
(e) vV v 46.7 63.7 684 73.9
(f) v vV v v 484 668 73.2 78.8



Conclusions

* \We propose Retroformer, a novel Transformer-based architecture for retrosynthesis

 Reaches the state-of-the-art performance for template-free retrosynthesis, with better
accuracy, validity, interpretabillity.

* In the future, we plan to:

> Study the diversity issue of SMILES generative models.
> Study the multi-step retrosynthesis planning problem using Retroformer as single-step backbone.

Code: https://github.com/yuewan2/Retroformer


https://github.com/yuewan2/Retroformer
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