Residual Networks: Function Approximation under Smoothness Constraint

Hao Liu*, *Minshuo Chen* † , Siawpeng Er † , Wenjing Liao † , Tong Zhang $^{\diamond}$ and Tuo Zhao †

Adversarial Robustness

- Credit: Goodfellow et al. ICLR 2015.

Smoothness Ties to Robustness

A close tie between smoothness and adversarial robustness [Gu & Rigazio, 2014; Madry et al., 2017; Miyato et al. 2018; Bubeck & Sellke, 2021].

Overparameterization Promotes Smoothness

 Large neural networks favor smoothness and yield good robustness [Madry et al., 2017; Bubeck & Sellke, 2021].

Overparameterization Promotes Smoothness

- Large neural networks favor smoothness and yield good robustness [Madry et al., 2017; Bubeck & Sellke, 2021].
- Theoretical explanation is still missing.

Contributions

- Approximation theory for overparameterized Convolutional Residual Networks, with smoothness guarantees.
- Adversarial risk bound of overparameterized Convolutional Residual Networks
- Extension to low-dimensional manifold data; no curse of ambient dimensionality.

Function Approximation Perspective

- Function value approximation [Yarotsky 2017; Suzuki 2019; Zhou 2020; Peterson & Voigtlaender 2020; Oono & Suzuki 2019; Liu et al. 2021].
- Smoothness of approximation [Hornik et al., 1990; Cardaliaguet & Euvrard, 1992; Gühring et al. 2020; Hon and Yang 2021]

Function Approximation with Smoothness Guarantees

Theorem

Width- \widetilde{M} depth- \widetilde{J} convolutional residual networks can approximate any Sobolev function $f \in W^{\alpha,p}((0,1)^D)$, i.e., there exists \widetilde{f} with

$$\|\widetilde{f} - f\|_{\infty} \le C(\widetilde{MJ})^{-\frac{\alpha-1}{D}}$$
 and $\|\widetilde{f}\|_{\operatorname{Lip}} \le \|f\|_{\operatorname{Lip}} + C\sqrt{D}(\widetilde{MJ})^{-\frac{\alpha-1}{D}}$

for some constant C depending on D, α, p .

Function Approximation with Smoothness Guarantees

Theorem

Width- \widetilde{M} depth- \widetilde{J} convolutional residual networks can approximate any Sobolev function $f \in W^{\alpha,p}((0,1)^D)$, i.e., there exists \widetilde{f} with

$$\|\widetilde{f} - f\|_{\infty} \le C(\widetilde{MJ})^{-\frac{\alpha-1}{D}}$$
 and $\|\widetilde{f}\|_{\operatorname{Lip}} \le \|f\|_{\operatorname{Lip}} + C\sqrt{D}(\widetilde{MJ})^{-\frac{\alpha-1}{D}}$

for some constant C depending on D, α, p .

- Increasing $\widetilde{M},\widetilde{J}$ amplifies approximation power.
- To achieve an ϵ L^{∞} -error, $\widetilde{MJ} = O(\epsilon^{-D/(\alpha-1)})$ (v.s. $O(\epsilon^{-D/\alpha})$).
- Extension: d-dimensional manifold, $\|\widetilde{f} f\|_{W^{1,\infty}} \leq C(\widetilde{MJ})^{-\frac{\alpha-1}{d}}$.

Adversarial Risk Bound

Adversarial risk

$$R(\widetilde{f}, \delta) = \mathbb{E}_{(\mathbf{x}, y)} \left[\sup_{\mathbf{x}' \in B_{\delta}(\mathbf{x})} \ell\left(\widetilde{f}(\mathbf{x}'), y\right) \right]$$

Corollary

Suppose there exists an optimal classifier $f^* \in W^{\alpha,p}((0,1)^D)$. In the setup of the Theorem above, convolutional residual network gives rise to \tilde{f} with

$$R(\widetilde{f}, \delta) \leq \underbrace{R(\widetilde{f}, 0)}_{\text{Clean Risk}} + \|\ell\|_{\text{Lip}} \underbrace{\left(\|f^*\|_{\text{Lip}} + C\sqrt{D}(\widetilde{MJ})^{\frac{\alpha - 1}{D}}\right)}_{\text{Smoothness of } \widetilde{f}} \delta.$$

Thank You