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Adversarial Robustness
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— Credit: Goodfellow et al. ICLR 2015.



Smoothness Ties to Robustness

® A close tie between smoothness and adversarial robustness [Gu &
Rigazio, 2014; Madry et al., 2017; Miyato et al. 2018; Bubeck &
Sellke, 2021].

Vulnerable



Overparameterization Promotes Smoothness

® |arge neural networks favor smoothness and yield good robustness
[Madry et al., 2017; Bubeck & Sellke, 2021].
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® Theoretical explanation is still missing.



Contributions

® Approximation theory for overparameterized Convolutional
Residual Networks, with smoothness guarantees.

® Adversarial risk bound of overparameterized Convolutional
Residual Networks.

® Extension to low-dimensional manifold data; no curse of ambient
dimensionality.



Function Approximation Perspective

® Function value approximation [Yarotsky 2017; Suzuki 2019; Zhou
2020; Peterson & Voigtlaender 2020; Oono & Suzuki 2019; Liu et
al. 2021].

® Smoothness of approximation [Hornik et al., 1990; Cardaliaguet &
Euvrard, 1992; Giihring et al. 2020; Hon and Yang 2021]




Function Approximation with Smoothness Guarantees

Theorem _
Width-M depth-J convolutional residual networks can approximate any
Sobolev function f € W*P((0,1)P), i.e., there exists f with

If = flloo < C(MA)" 0" and
Fllui < Il + CVD(MI)~ 5

for some constant C depending on D, «, p.
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Theorem _
Width-M depth-J convolutional residual networks can approximate any
Sobolev function f € W*P((0,1)P), i.e., there exists f with

I = flloo < C(MJ)~"5"  and
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for some constant C depending on D, «, p.

® Increasing I\Nﬂ,j amplifies approximation power.

* To achieve an ¢ L®-error, MJ = O(e~P/(@=1)) (v.s. O(e~D/?)).
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* Extension: d-dimensional manifold, ||f — || y1. < C(MJ)



Adversarial Risk Bound

Adversarial risk

R(?, 6) =Ex,y) | sup ¢ (?(x'),y)]
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Corollary

Suppose there exists an optimal classifier f* € W*P((0,1)P). In the
setup of the Theorem above, convolutional residual network gives rise to
f with

R(F,0) < R(F,0) +lflluip (IF* iy + CVD(MI)*" ) 5
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