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import gym

env = gym.make("CartPole-v1")

observation = env.reset()

for _ in range(1000):
env.render()

8/07 a’()’ S?]_, a/?]_ ¢ o o action = env.action_space.sample() # y{

observation, reward, done, info = env.

if done:

How does this happen? observation = env.reset()

env.close()

[Code snippet from https://gym.openai.com/]
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Only in simulation!
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Matching Expert Distributions for

Autonomous Learning
Addressing challenge 2:

backward policy avoids

collapse of state distribution 0
demonstrations
o—
g 7T, .
ﬂf Addressing challenge 1: agent
. Back\_lvard doesn’t drift away
Forward Policy Policy

Pro: Forward policy tries the task from wide set of initial states,
both easy and hard, improving the sample efficiency [1]

[1] Kakade & Langford. Approximately Optimal Approximate Reinforcement Learning. ICML 2002.
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MEDAL Overview

forward policy backward policy

iv<>] Dis(o™ (s) || p*(s))

How do we minimize the DJS ? Using the small set of

demonstrations, learn a classifier C(S) :
+1 s € demos
-1 s~ pT(s)

and the backward policy maximizes:

E [Z log(1 c<st+1>>]

C(s) =
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-  Proposed MEDAL, a simple and efficient autonomous RL algorithm
- Encourages the agent to stay close to the expert state distribution
- Wider initial state distribution enables sample efficient learning

Website: https://sites.google.com/view/medal-arl/home
Code: https://github.com/architsharma97/medal
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