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“Navigate to the basketball court”

“Grasp the mug”

“Learn how to shelf a book”

Several 
thousands of 

trials!
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How does this happen?

Only in simulation!
[Code snippet from https://gym.openai.com/]
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[Combining model-based and model-free updates 
for trajectory-centric reinforcement learning, 
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[Collective Robot Reinforcement Learning with Distributed 
Asynchronous Guided Policy Search, Yahya et al. 2016]

Human closes the door  
before every trial :(

Human resets the puck  
before every trial :(
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Episodic Learning Non-Episodic Learning

. ..

Can always retry 
the task from initial 
state distribution

Challenge 1: exploration 
can cause the agent to 

drift far away

Challenge 2: state 
distribution collapse

       The agent never learns a good 
policy
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Non-Episodic Learning via MEDAL

Matching Expert Distributions for 
Autonomous Learning

Forward Policy
Backward 

Policy

Addressing challenge 1: agent 
doesn’t drift away 

Addressing challenge 2: 
backward policy avoids 

collapse of state distribution

Pro: Forward policy tries the task from wide set of initial states, 
both easy and hard, improving the sample efficiency [1]

[1] Kakade & Langford. Approximately Optimal Approximate Reinforcement Learning. ICML 2002.

demonstrations
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Matching Expert Distributions for 
Autonomous Learning

Forward Policy
Backward 

Policy

forward policy backward policy

How do we minimize the              ? Using the small set of 

demonstrations, learn a classifier               :

and the backward policy maximizes:
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