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2 MaLGa, Università degli Studi di Genova
3 Center for Brains, Minds and Machines, MIT
4 Istituto Italiano di Tecnologia, Genova



Summary of Our Contributions

Exponential rates in classification under margin conditions:

Square loss Margin losses
e.g. logistic, exponential

Binary Audibert and Tsybakov 2007,
Koltchinskii and Beznosova 2005

Nitanda and Suzuki, 2019

Multiclass Cabannes et al. 2021 This work
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Classification
0-1 Loss

find c : X → Y , #Y = T

c∗ = argmin
c

R(c) = argmin
c

E1{c(X) ̸= Y }

Surrogate Losses

find f : X → RT−1

fℓ = argmin
f

Rℓ(f) = argmin
f

Eℓ(f(X), Y )

D : RT−1 → Y decoding operator c = Df plug-in classifier
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Bias-Variance in Classification

f̂λ fλ fℓ c∗

Variance Bias Surrogate

[fℓ]

[fℓ] = {f : X → RT−1 : Df = Dfℓ almost surely}

Fisher consistent: Dfℓ = c∗ almost surely
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Hard-Margin Condition

min
y ̸=c∗(X)

ρ(c∗(X) | X)− ρ(y | X) ≥ δ almost surely

Proposition (Vigogna, Meanti, De Vito, Rosasco)
The hard-margin condition holds if and only if η is confident:

dist(η(X),B) ≥ δ almost surely

where B is the decision boundary

δ

binary case (T = 2): |η(X)| ≥ δ almost surely [Mammen and Tsybakov 1999]
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Exponential Convergence for Margin Losses
ℓ(w, y) = ϕ(⟨w, y⟩) ϕ : R → [0,∞)

assume
(i) ∥fλ − fℓ∥∞ −→

λ
0

(ii) P{∥f̂λ − fλ∥∞ > ϵ} ≲ exp(−nϵ2/b2)

(iii) ℓ is Fisher consistent
(iv) ϕ is twice differentiable, decreasing and convex

Theorem (Vigogna, Meanti, De Vito, Rosasco)
If the hard-margin condition holds, then for λ ≤ λ∗

E|R(Df̂λ)−R∗| ≲ exp(−n m(δ)2λ/b2)

hard margin (iv)⇒ fℓ is confident (i)⇒ fλ is confident (ii)⇒ exponential convergence

T = 2: [Nitanda and Suzuki, 2019]
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