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Summary of Our Contributions

Exponential rates in classification under margin conditions:

Margin losses

Square loss oS .
e.g. logistic, exponential

Audibert and Tsybakov 2007,

A Nitanda and SuzuRi, 201
KoltchinsRii and Beznosova 2005 ?

Binary

Multiclass Cabannes et al. 2021 This work
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Classification
0-1Loss

finde: X =Y, #Y =T

¢, = argminR(c) = argmin E1{c(X) # Y}

C
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Classification

0-1Loss Surrogate Losses
finde: X =Y, #Y =T find f: X - RT-!
¢, = argminR(c) = argmin E1{c(X) # Y} fo= arg;nin Re(f) = argfmin]Ef(f(X), Y)
D:RT-! Y decoding operator c=Df plug-in classifier
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Bias-Variance in Classification

Variance Bias Surrogate

I Ix fe
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Bias-Variance in Classification

Variance Bias Surrogate

I Ix fe
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Bias-Variance in Classification

[fe]

Surrogate

Variance

[f)={f: X = RT"1: Df = Df, almost surely}
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Bias-Variance in Classification

[fe]

Surrogate

Variance

[f)={f: X = RT"1: Df = Df, almost surely}

Fisher consistent: Df, = c, almost surely
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Hard-Margin Condition

min  p(c.(X) | X) —p(y| X) > almost surely
y#c. (X)

Proposition (Vigogna, Meanti, De Vito, Rosasco) ' 5"

The hard-margin condition holds if and only if 5 is confident: /.

dist(n(X),B) > 4§ almost surely N

where B is the decision boundary ‘ \\

binary case (T'=12): |n(X)|>6 almostsurely [Mammen and Tsybakov 1999]
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Exponential Convergence for Margin Losses

assume l(w,y) = o((w,y))  ¢:R—=[0,00)

(D) 1fx = felloo <0
(i) P{[I/x — falloo > €} < exp(—ne?/b?)
(iii) ¢ is Fisher consistent

(iv) ¢ is twice differentiable, decreasing and convex

Theorem (Vigogna, Meanti, De Vito, Rosasco)
If the hard-margin condition holds, then for A < X,

E[R(Df)) = Ru| S exp(—n m(8)*A/b?)

T = 2: [Nitanda and Suzuki, 2019]
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Exponential Convergence for Margin Losses

assume l(w,y) = o((w,y))  ¢:R—=[0,00)

(D) 1fx = felloo <0
(i) P{[I/x — falloo > €} < exp(—ne?/b?)
(iii) ¢ is Fisher consistent

(iv) ¢ is twice differentiable, decreasing and convex
Theorem (Vigogna, Meanti, De Vito, Rosasco)
If the hard-margin condition holds, then for A < X,
E[R(Dfy) = Ra| S exp(—n m(3)’A/b?)
hard margin iy feis confident 9 fx is confident @) exponential convergence

T = 2: [Nitanda and Suzuki, 2019]
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