
TSPipe: Learn from
Teacher Faster with Pipelines

Hwijoon Lim, Yechan Kim, Sukmin Yun,

Jinwoo Shin, Dongsu Han



2
Teacher-Student (TS) Framework
• Teacher-student (TS) framework is commonly adopted in Knowledge Distillation (KD)
• Also adopted by many momentum-based Self-Supervised Learning (SSL) networks

• Teacher network 𝜉𝜉𝑛𝑛 is slowly updated as an exponential moving average of student 𝜃𝜃𝑛𝑛
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• Some large models cannot be trained as a whole, even with a cutting-edge GPU 
• Model Parallelism

• split a model into muiltiple partitions and 
train with multiple GPUs

• serious GPU under-utilization due to the 
dependency between partitions 

• Pipeline Parallelism
• pipelines computation of each batch 

for better GPU utilization
• Approaches that preserve training semantics

(e.g. GPipe) fail to fully utilize GPUs
• Approaches that achieve higher utilization

incur overheads (e.g. memory, accuracy)

Model Parallelism and Pipeline Parallelism

Existing pipeline parallelism schemes cannot fully utilize GPU without tradeoffs.

Pipeline Parallelism (GPipe)

Inter-Layer Model Parallelism
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Challenge
• Can we fully schedule the computations despite the dependency between them? 

• To compute the teacher 𝜉𝜉𝑛𝑛+1, we need to wait for student 𝜃𝜃𝑛𝑛+1 to be computed 

• Can we eliminate pipeline bubbles by inserting computations while GPUs are idle? 
• Reordering computations may require activation stashing for gradient calculation 
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Teacher network does not require a backward pass
 Teacher network’s forward pass can be scheduled more leniently without activation stashing
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TSPipe Design
1. Separates the scheduling of student and teacher network from its design
2. Interleaves teacher’s forward pass between the computation of student

TSPipe fully schedules GPU pipeline by interleaving computation in pipeline bubble. 

Gpipe [Huang ’19]
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TSPipe Design - Attaining high model accuracy

• As 𝜉𝜉𝑛𝑛−1 ≈ 𝜉𝜉𝑛𝑛, TSPipe uses: 𝜃𝜃𝑛𝑛+1 ← optimizer(𝜃𝜃𝑛𝑛,∇𝜃𝜃𝑛𝑛ℒ𝜃𝜃𝑛𝑛,𝝃𝝃𝒏𝒏−𝟏𝟏 , 𝜂𝜂)
• Asymmetric parameter update: Use stale parameter for only teacher network 𝜉𝜉𝑛𝑛
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• Original training semantic: 𝜃𝜃𝑛𝑛+1 ← optimizer(𝜃𝜃𝑛𝑛,∇𝜃𝜃𝑛𝑛ℒ𝜃𝜃𝑛𝑛,𝝃𝝃𝒏𝒏 , 𝜂𝜂)
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Evaluation – Speedup
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TSPipe achieves up to 6.42x (8 GPUs) and 12.15x (16 GPUs) speedup compared to Inter-layer MP.

Soft Target [Hinton ’15] DistilBERT [Sanh ’19]
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Evaluation – Accuracy
• Asymmetric parameter update mitigates model accuracy drop.

• Up to 5.9%p accuracy degradation without Asymmetric parameter update
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Conclusion
• TSPipe is a framework that enables faster training of large models with the TS framework without 

risking any performance degradation of the model.
• TSPipe utilizes 100% of GPU pipelines for training KD and SSL with momentum networks, leveraging the 

properties of the TS framework.
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