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Teacher-Student (TS) Framework

e Teacher-student (TS) framework is commonly adopted in Knowledge Distillation (KD)

* Also adopted by many momentum-based Self-Supervised Learning (SSL) networks
* Teacher network &, is slowly updated as an exponential moving average of student 6,
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Model Parallelism and Pipeline Parallelism

 Some large models cannot be trained as a whole, even with a cutting-edge GPU

e Model Parallelism

* split a model into muiltiple partitions and
train with multiple GPUs

* serious GPU under-utilization due to the Bubble Bubble
dependency between partitions | | | |
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» pipelines computation of each batch
for better GPU utilization

* Approaches that preserve training semantics
(e.g. GPipe) fail to fully utilize GPUs

* Approaches that achieve higher utilization
incur overheads (e.g. memory, accuracy) Pipeline Parallelism (GPipe)
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Existing pipeline parallelism schemes cannot fully utilize GPU without tradeoffs.



Challenge

e Can we fully schedule the computations despite the dependency between them?
e To compute the teacher {n+1, we need to wait for student On+1 to be computed

* Can we eliminate pipeline bubbles by inserting computations while GPUs are idle?
* Reordering computations may require activation stashing for gradient calculation
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Teacher network does not require a backward pass
—> Teacher network’s forward pass can be scheduled more leniently without activation stashing




TSPipe Design

1. Separates the scheduling of student and teacher network from its design
2. Interleaves teacher’s forward pass between the computation of student
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TSPipe fully schedules GPU pipeline by interleaving computation in pipeline bubble.



TSPipe Design - Attaining high model accuracy

* Original training semantic: 6, < optimizer(6,,Vg Lg_: ,7)
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* As$p_1 = §p, TSPipe uses: 0,41 « optimizer(6,,Vy Lg_: .,7)
* Asymmetric parameter update: Use stale parameter for only teacher network &,
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Evaluation — Speedup
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TSPipe achieves up to 6.42x (8 Gpus) and 12.15x (16 Gpus) speedup compared to Inter-layer MP.



Evaluation — Accuracy

 Asymmetric parameter update mitigates model accuracy drop.
* Up to 5.9%p accuracy degradation without Asymmetric parameter update
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TSPipe achieves speedup without loss of model accuracy.



Conclusion

* TSPipe is a framework that enables faster training of large models with the TS framework without
risking any performance degradation of the model.

e TSPipe utilizes 100% of GPU pipelines for training KD and SSL with momentum networks, leveraging the
properties of the TS framework.
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