Partial Disentanglement for Domain Adaptation

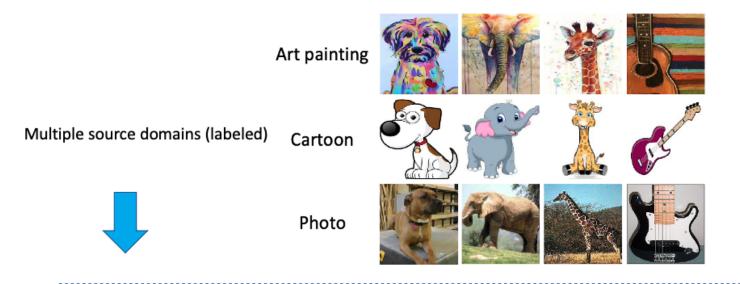
Lingjing Kong¹, Shaoan Xie¹, Weiran Yao¹, Yujia Zheng¹, Guangyi Chen^{2,1}, Petar Stojanov³, Victor Akinwande¹, Kun Zhang^{2,1}

¹Carnegie Mellon University

²Mohamed bin Zayed University of Artificial Intelligence

³Broad Institute of MIT and Harvard

Multi-source Domain Adaptation: Setup and Challenges



Novel target domain (unlabeled) Sketch

Multi-source Domain Adaptation:

- Resources: labeled data $(\mathbf{x}^{(i)}, y^{(i)})$ for source domains $i = 1, \ldots$, and unlabeled data $\mathbf{x}^{(\tau)}$ for the target domain τ .
- Goal: learning a strong classifier $p_{y|\mathbf{x},\tau}$ for the target domain τ .

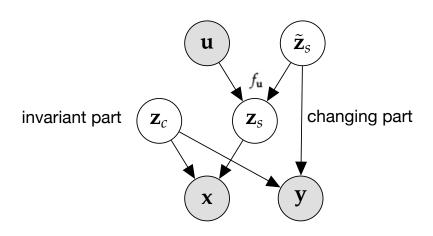
Challenges and Our Contribution

III-posedness:
$$p_{\mathbf{x}|\tau} \stackrel{????}{\Longrightarrow} p_{\mathbf{x},y|\tau}$$

Our contribution:

- We formulate the multi-source domain adaptation problem in the form of a *latent variable model* in light of the *minimal change principle*.
- Under mild assumptions, we show that the latent space is partial identifiable.
- Based on the theoretical insight, we propose a practical approach consisting of VAE and flow architectures.

Motivation and Formulation



$$\mathbf{z}_c \sim p_{\mathbf{z}_c}, \ \tilde{\mathbf{z}}_s \sim p_{\tilde{\mathbf{z}}_s}, \ \mathbf{z}_s = f_{\mathbf{u}}(\tilde{\mathbf{z}}_s), \ \mathbf{x} = g(\mathbf{z}_c, \mathbf{z}_s).$$

- Partitioned latent space: the invariant part z_c and the changing part z_s .
- Minimal change: the domain influence function $f_{\mathbf{u}}$ being component-wise monotonic.

Domain adaptation \implies how to identify $(\mathbf{z}_c, \tilde{\mathbf{z}}_s)$ from unlabeled data (\mathbf{x}, \mathbf{u}) ?

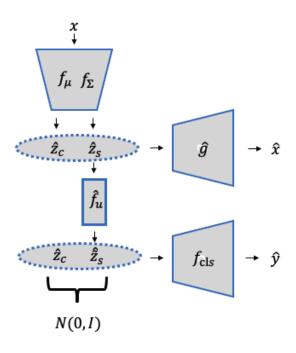
Identifiabilty Theory

Theorem 1

(Informal) Under the assumed data generating process and additional assumptions (e.g. sufficient variability of $p_{\mathbf{z}_s|\mathbf{u}}$ over domains), \mathbf{z}_s and \mathbf{z}_c can be recovered up to component-wise indeterminacy and block-wise indeterminacy respectively.

- Therefore, we can estimate the true latent variables $(\mathbf{z}_c, \mathbf{z}_s)$ from unlabeled data (\mathbf{x}, \mathbf{u}) .
- Further, we can recover $(\mathbf{z}_c, \tilde{\mathbf{z}}_s)$ and learn a classifier $p_{y|\mathbf{z}_c, \tilde{\mathbf{z}}_s}$ that is applicable to *all domains*.

Proposed Architecture: iMSDA



$$\mathcal{L} = \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{VAE}} + \mathcal{L}_{\text{ent}}.$$

- \mathcal{L}_{VAE} : VAE $(f_{\mu}, f_{\Sigma}, \hat{g})$ and flow $(\hat{f}_{\mathbf{u}})$ are trained to estimate the joint distribution $p_{\mathbf{x}, \mathbf{z}_{c}, \tilde{\mathbf{z}}_{s} | \mathbf{u}}$.
- \mathcal{L}_{cls} and \mathcal{L}_{ent} : cross-entropy \mathcal{L}_{cls} on source domains and conditional entropy \mathcal{L}_{ent} on the target domain are used to train a classifier (f_{cls}) to estimate $p_{y|\mathbf{z}_c,\tilde{\mathbf{z}}_s}$.

Experimental Results: Real-world Data

Methods	ightarrow Art	ightarrow Cartoon	ightarrow Photo	ightarrow Sketch	Avg
Source Only	74.9 ± 0.88	72.1 ± 0.75	94.5±0.58	64.7±1.53	76.6
DANN	81.9±1.13	77.5 ± 1.26	$91.8 {\pm} 1.21$	74.6 ± 1.03	81.5
CMSS	88.6 \pm 0.36	$90.4\!\pm0.80$	96.9 ± 0.27	82.0 ± 0.59	89.5
LtC-MSDA	90.19	90.47	97.23	81.53	89.8
T-SVDNet	90.43	90.61	98.50	85.49	91.25
iMSDA (Ours)	93.75 ± 0.32	92.46 ± 0.23	98.48 ± 0.07	89.22 ± 0.73	93.48

Table: Classification results on PACS. We employ Resnet-18 as our encoder backbone. We choose $\alpha_1=0.1$ and $\alpha_2=5e-5$. The latent space is partitioned with $n_s=4$ and n=64.

 On multiple benchmark datasets (e.g. PACS), our approach achieves superior perform over all transfer directions.

Thank You!

