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Multi-source Domain Adaptation: Setup and Challenges

Multi-source Domain Adaptation:
• Resources: labeled data (x(i), y(i)) for source domains i = 1, . . . , and

unlabeled data x(⌧) for the target domain ⌧ .
• Goal: learning a strong classifier py|x,⌧ for the target domain ⌧ .
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Challenges and Our Contribution

Ill-posedness: px|⌧
????
=) px,y|⌧

Our contribution:
• We formulate the multi-source domain adaptation problem in the form of a

latent variable model in light of the minimal change principle.

• Under mild assumptions, we show that the latent space is partial
identifiable.

• Based on the theoretical insight, we propose a practical approach
consisting of VAE and flow architectures.

3 / 8






























































Motivation and Formulation

x y

zc zs

u z̃s

zc ⇠ pzc , z̃s ⇠ pz̃s , zs = fu(z̃s), x = g(zc, zs).

• Partitioned latent space: the invariant part zc and the changing part zs.

• Minimal change: the domain influence function fu being component-wise
monotonic.

Domain adaptation =) how to identify (zc, z̃s) from unlabeled data (x,u)?

4 / 8






























invariant part changing part



Identifiabilty Theory

Theorem 1
(Informal) Under the assumed data generating process and additional
assumptions (e.g. sufficient variability of pzs|u over domains), zs and zc can be
recovered up to component-wise indeterminacy and block-wise indeterminacy
respectively.

• Therefore, we can estimate the true latent variables (zc, zs) from unlabeled
data (x,u).

• Further, we can recover (zc, z̃s) and learn a classifier py|zc,z̃s that is
applicable to all domains.

5 / 8



Proposed Architecture: iMSDA

L = Lcls + LVAE + Lent.

• LVAE: VAE (fµ, f⌃, ĝ) and flow (f̂u) are trained to estimate the joint distribution
px,zc,z̃s|u.

• Lcls and Lent: cross-entropy Lcls on source domains and conditional entropy Lent on
the target domain are used to train a classifier (fcls) to estimate py|zc,z̃s .

6 / 8



Experimental Results: Real-world Data

Methods ! Art ! Cartoon ! Photo ! Sketch Avg
Source Only 74.9 ± 0.88 72.1±0.75 94.5±0.58 64.7±1.53 76.6

DANN 81.9±1.13 77.5±1.26 91.8±1.21 74.6±1.03 81.5
CMSS 88.6 ±0.36 90.4± 0.80 96.9±0.27 82.0±0.59 89.5

LtC-MSDA 90.19 90.47 97.23 81.53 89.8
T-SVDNet 90.43 90.61 98.50 85.49 91.25

iMSDA (Ours) 93.75 ± 0.32 92.46 ± 0.23 98.48 ± 0.07 89.22 ± 0.73 93.48

Table: Classification results on PACS. We employ Resnet-18 as our encoder
backbone. We choose ↵1 = 0.1 and ↵2 = 5e � 5. The latent space is partitioned with
ns = 4 and n = 64.

• On multiple benchmark datasets (e.g. PACS), our approach achieves
superior perform over all transfer directions.
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Thank You!
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