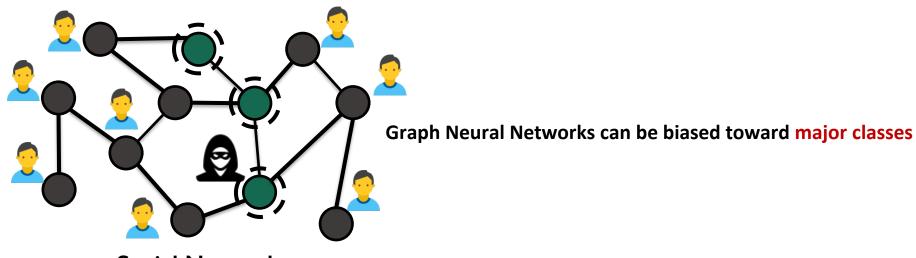
TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification

Jaeyun Song*, Joonhyung Park*, Eunho Yang
(*equal contribution)
ICML 2022
Graduate School of AI, KAIST

Machine Learning & Intelligence Laboratory

Introduction

- Nodes in real-world graphs are inherently class-imbalanced
 - e.g. social networks, commercial graphs, chemical molecules
- Learning reliable node representations under class-imbalanced graphs is challenging due to the interactive nature of graph data
- Diverse strategies to handle imbalance in graphs have been proposed

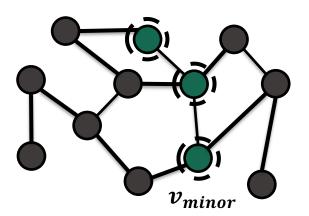


Imbalance Handling in Graph-Structured Data

- Existing works have in common that they regard the minor class nodes 'as a group'
 and fortify minor classes in their own way (e.g. SMOTE, re-weight, logit adjustment)
- These approaches effectively mitigate the model bias for major classes while unavoidably increasing false positives for major class nodes

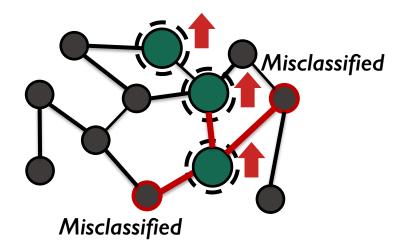
Misclassifying a major class node as a minor class

 Given the message interactions of GNNs, certain compensated minor nodes could significantly degrade the performance of other classes



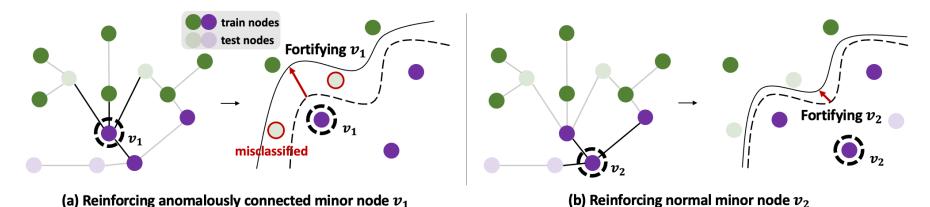
Imbalance handling

fortifying minor classes 'as a group'



Topological Positions of False Positives

 We hypothesize that weighted minor nodes having high connectivity rates with other (major) classes induce excessive false positives



• First we define anomalously connected node set V^* as:

Neighbor Label Distribution (Local Topology)

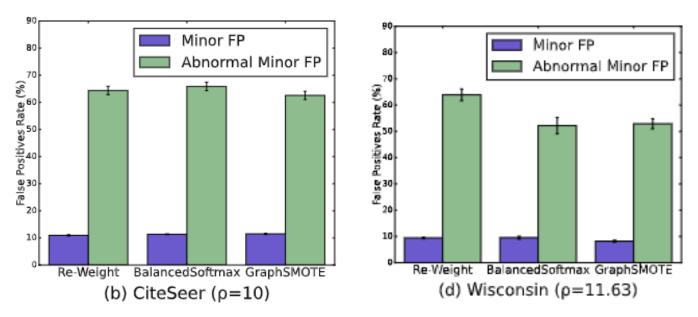
$$V^* = \{ v \in V^L | \max_{t \in |\mathcal{Y}| \setminus \{y_v\}} \underbrace{\mathcal{D}_{v,t}} > 1 \}$$

Class-wise Connectivity Matrix

A set of nodes that has more connections with other classes compared to class-averaged level

Topological Positions of False Positives

- We compute the following two ratios
- $\frac{FP(\mathcal{N}(v) \cap V_{major} \mid v \in V_{minor}^*)}{|\mathcal{N}(v) \cap V_{major} \mid v \in V_{minor}^*|}$: the probability of being false positives when major nodes are connected with anomalous minor nodes (**Abnormal Minor FP** in Figure)
- $\frac{FP(V_{major})}{|V_{major}|}$: the average probability of being false positives (**Minor FP** in Figure)

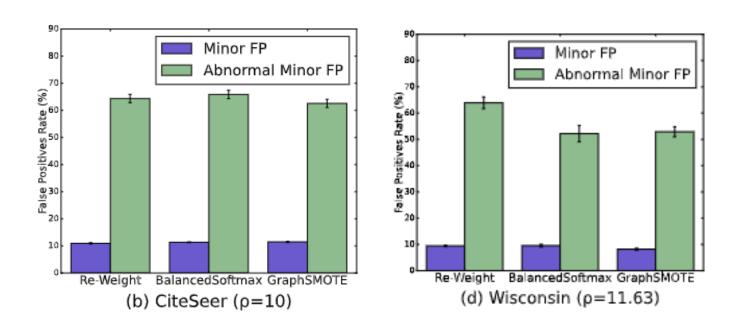


^{*} $FP(\cdot)$: a function that counts the number of false positives

Topological Positions of False Positives

- We confirm that false positives on minor classes are intensively concentrated around minor nodes that have higher connectivity with other classes
- False positives due to fortifying minor nodes do NOT appear uniformly on graph

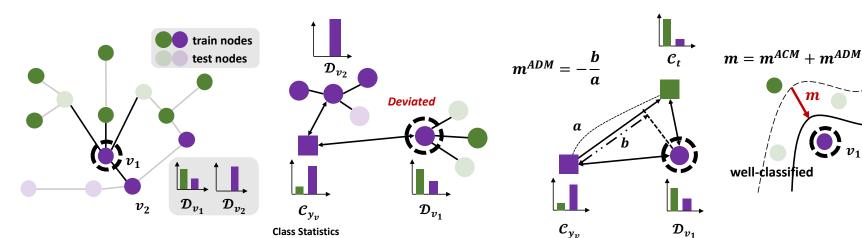
Minor nodes deviated from general connectivity patterns induce excessive false positive cases



^{*} $FP(\cdot)$: a function that counts the number of false positives

Method Overview

- To decrease the false positive cases, we propose an effective margin adjustment
- TAM determines the intensity of imbalance compensation based on local topology
- TAM consists of two core components: ACM and ADM



(a) Compute neighbor label distribution

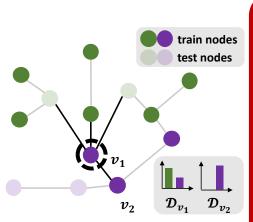
(b) Identify pattern-deviated nodes (Determining the margin m^{ACM})

(c) Specify confusing classes (Determining the margin m^{ADM})

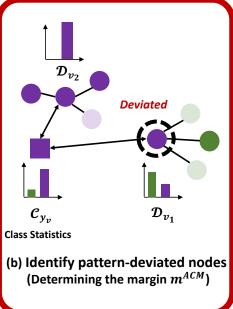
(d) Adjust margins

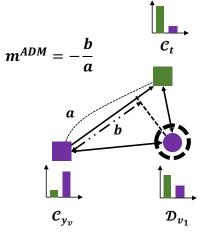
Method: Anomalous Connectivity Margin (ACM)

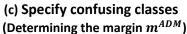
- Deviated nodes from class-homophily tendency would be risky in imbalance handling process
- ACM is designed to reduce the learning signals of deviated nodes
- ACM decreases the margin if a node is deviated from the connectivity pattern

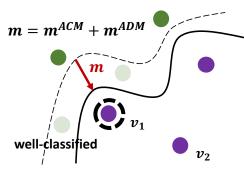


(a) Compute neighbor label distribution





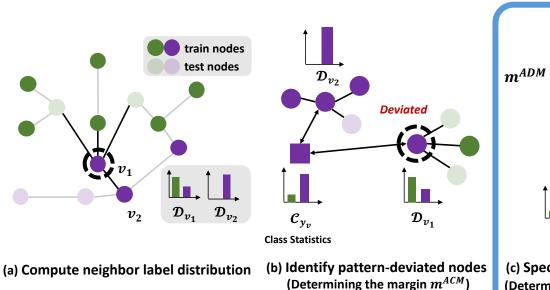


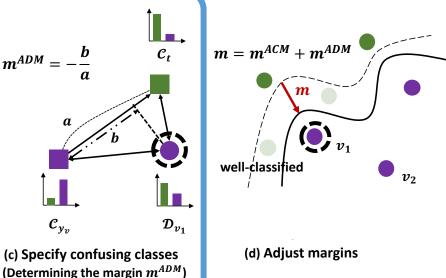


(d) Adjust margins

Method: Anomalous Distribution-Aware Margin (ADM)

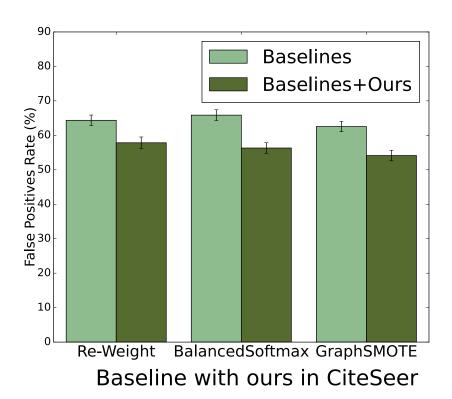
- ACM does not recognize whether a deviated node is confused with other classes or simply an outlier
- ADM is devised to identify indistinguishable nodes
- ADM complementarily adjusts the margins according to the relative closeness

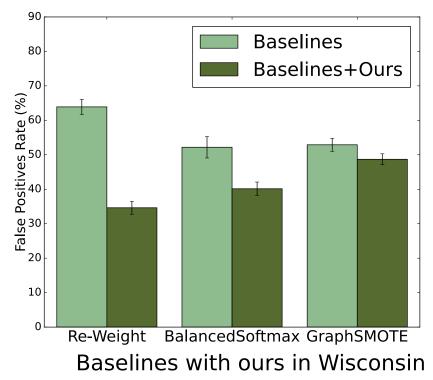




Experiment: Node & Neighbor Memorization

 Combining TAM decreases the false positives near anomalously connected nodes by adjusting margins of these nodes.





CN

Experiment: Homophilous Graphs

- Imbalance handling methods combined with TAM show the best performance
- TAM improves the performance over various types of imbalance handling methods
- The rationale of these results is that TAM **identifies non-typically connected nodes** and adjust margins

	Dataset	Cora		CiteSeer		PubMed	
	Imbalance Ratio ($ ho=10$)	bAcc.	F1	bAcc.	F1	bAcc.	F1
-	Cross Entropy	60.95 ± 1.22	59.30 ± 1.66	38.21 ± 1.12	29.40 ± 1.97	65.21 ± 1.40	55.43 ± 2.79
	Re-Weight	65.52 ± 0.84	65.54 ± 1.20	44.52 ± 1.22	38.85 ± 1.62	70.17 ± 1.25	66.37 ± 1.73
	PC Softmax	67.79 ± 0.92	67.39 ± 1.08	49.81 ± 1.12	45.55 ± 1.26	70.20 ± 0.60	68.83 ± 0.73
	DR-GCN	60.17 ± 0.83	59.31 ± 0.97	42.64 ± 0.75	38.22 ± 1.22	65.51 ± 0.81	64.95 ± 0.53
	GraphSMOTE	66.29 ± 0.93	66.30 ± 1.25	44.40 ± 1.27	39.10 ± 1.78	68.51 ± 1.14	62.63 ± 2.39
	BalancedSoftmax	68.46 ± 0.67	68.41 ± 0.80	53.70 ± 1.40	50.73 ± 1.64	72.97 ± 0.80	70.80 ± 1.11
	+ TAM	69.90 ± 0.73	69.89 ± 0.89	55.54 ± 1.40	54.18 ± 1.69	74.13 ± 0.70	73.27 ± 0.67
	ReNode	67.61 ± 0.77	$67.\overline{27} \pm 0.91$	47.78 ± 1.67	$42.\overline{51} \pm 2.\overline{30}$	71.59 ± 1.70	66.56 ± 2.90
	+ TAM	67.18 ± 1.32	67.39 ± 1.62	48.36 ± 1.63	42.48 ± 2.10	71.00 ± 1.86	67.18 ± 3.42
	GraphENS	70.31 ± 0.51	70.30 ± 0.65	55.42 ± 1.74	53.85 ± 2.00	71.89 ± 0.80	71.07 ± 0.66
	+ TAM	71.52 ± 0.30	71.71 ± 0.45	57.47 ±1.56	56.23 ± 1.87	74.01 ± 0.73	72.41 ± 0.94

Experiment: Heterophilous Graphs

- TAM also shows superior performance than baselines on heterophilous graphs
- TAM could identify the outliers nodes by using the class-wise connectivity pattern and reduce the false positives stemming from these nodes

	Dataset	Chameleon		Squirrel		Wisconsin	
	Imbalance Ratio	$(\rho = 5)$		$(\rho = 5)$		$(\rho = 11.63)$	
	imparance Kano	bAcc.	F1	bAcc.	F1	bAcc.	F1
	Cross Entropy	34.33 ± 0.74	31.54 ± 0.95	24.89 ± 0.37	21.33 ± 0.52	32.15 ± 2.72	30.92 ± 2.76
	Re-Weight	39.63 ± 0.49	39.08 ± 0.50	26.49 ± 0.41	25.92 ± 0.41	42.15 ± 2.33	37.66 ± 2.27
	PC Softmax	41.47 ± 0.78	40.51 ± 0.89	27.31 ± 0.51	26.74 ± 0.50	41.89 ± 3.95	38.03 ± 3.35
	DR-GCN	36.85 ± 0.77	34.61 ± 0.62	25.40 ± 0.43	22.83 ± 0.59	33.93 ± 2.34	31.75 ± 2.50
Η	GraphENS	40.66 ± 1.13	39.49 ± 1.10	26.87 ± 0.43	26.78 ± 0.41	40.93 ± 2.78	37.43 ± 2.74
GAT	BalancedSoftmax	41.47 ± 0.71	40.52 ± 0.78	26.66 ± 0.39	25.97 ± 0.35	41.20 ± 3.08	37.93 ± 2.99
•	+ TAM	42.56 ± 0.59	41.40 ± 0.74	27.75 ± 0.44	27.23 ± 0.45	48.44 ± 3.32	43.71 ± 2.91
-	ReNode	40.41 ± 0.56	39.85 ± 0.60	26.89 ± 0.45	26.40 ± 0.46	40.88 ± 2.84	37.13 ± 2.74
	+ TAM	41.53 ± 0.35	40.76 ± 0.50	26.53 ± 0.40	26.00 ± 0.42	46.64 ± 3.35	41.60 ± 3.02
-	GraphSMOTE	42.27 ± 0.51	41.43 ± 0.54	28.17 ± 0.56	27.38 ± 0.66	40.77 ± 2.24	38.96 ± 2.48
	+ TAM	42.83 ± 0.82	42.26 \pm 0.83	28.44 \pm 0.33	28.02 ± 0.37	41.82 ± 2.94	38.23 ± 3.13

Conclusion

- We found that the adjacent major nodes of anomalously connected minor nodes are prone to be misclassified as the minor class
- We propose TAM that adjusts margin according the extent of deviation from connectivity patterns and relative closeness to self class compared the target class
- We show that combing TAM improves the performance on both homophilous and heterophilous graphs

