TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification Jaeyun Song*, Joonhyung Park*, Eunho Yang (*equal contribution) ICML 2022 Graduate School of AI, KAIST Machine Learning & Intelligence Laboratory #### Introduction - Nodes in real-world graphs are inherently class-imbalanced - e.g. social networks, commercial graphs, chemical molecules - Learning reliable node representations under class-imbalanced graphs is challenging due to the interactive nature of graph data - Diverse strategies to handle imbalance in graphs have been proposed #### **Imbalance Handling in Graph-Structured Data** - Existing works have in common that they regard the minor class nodes 'as a group' and fortify minor classes in their own way (e.g. SMOTE, re-weight, logit adjustment) - These approaches effectively mitigate the model bias for major classes while unavoidably increasing false positives for major class nodes Misclassifying a major class node as a minor class Given the message interactions of GNNs, certain compensated minor nodes could significantly degrade the performance of other classes Imbalance handling fortifying minor classes 'as a group' #### **Topological Positions of False Positives** We hypothesize that weighted minor nodes having high connectivity rates with other (major) classes induce excessive false positives • First we define anomalously connected node set V^* as: **Neighbor Label Distribution (Local Topology)** $$V^* = \{ v \in V^L | \max_{t \in |\mathcal{Y}| \setminus \{y_v\}} \underbrace{\mathcal{D}_{v,t}} > 1 \}$$ **Class-wise Connectivity Matrix** A set of nodes that has more connections with other classes compared to class-averaged level #### **Topological Positions of False Positives** - We compute the following two ratios - $\frac{FP(\mathcal{N}(v) \cap V_{major} \mid v \in V_{minor}^*)}{|\mathcal{N}(v) \cap V_{major} \mid v \in V_{minor}^*|}$: the probability of being false positives when major nodes are connected with anomalous minor nodes (**Abnormal Minor FP** in Figure) - $\frac{FP(V_{major})}{|V_{major}|}$: the average probability of being false positives (**Minor FP** in Figure) ^{*} $FP(\cdot)$: a function that counts the number of false positives #### **Topological Positions of False Positives** - We confirm that false positives on minor classes are intensively concentrated around minor nodes that have higher connectivity with other classes - False positives due to fortifying minor nodes do NOT appear uniformly on graph Minor nodes deviated from general connectivity patterns induce excessive false positive cases ^{*} $FP(\cdot)$: a function that counts the number of false positives #### **Method Overview** - To decrease the false positive cases, we propose an effective margin adjustment - TAM determines the intensity of imbalance compensation based on local topology - TAM consists of two core components: ACM and ADM (a) Compute neighbor label distribution (b) Identify pattern-deviated nodes (Determining the margin m^{ACM}) (c) Specify confusing classes (Determining the margin m^{ADM}) (d) Adjust margins ### Method: Anomalous Connectivity Margin (ACM) - Deviated nodes from class-homophily tendency would be risky in imbalance handling process - ACM is designed to reduce the learning signals of deviated nodes - ACM decreases the margin if a node is deviated from the connectivity pattern (a) Compute neighbor label distribution (d) Adjust margins #### **Method: Anomalous Distribution-Aware Margin (ADM)** - ACM does not recognize whether a deviated node is confused with other classes or simply an outlier - ADM is devised to identify indistinguishable nodes - ADM complementarily adjusts the margins according to the relative closeness ## **Experiment: Node & Neighbor Memorization** Combining TAM decreases the false positives near anomalously connected nodes by adjusting margins of these nodes. ## CN #### **Experiment: Homophilous Graphs** - Imbalance handling methods combined with TAM show the best performance - TAM improves the performance over various types of imbalance handling methods - The rationale of these results is that TAM **identifies non-typically connected nodes** and adjust margins | | Dataset | Cora | | CiteSeer | | PubMed | | |---|------------------------------|-------------------------|-----------------------------|--------------------|--|-------------------------|------------------| | | Imbalance Ratio ($ ho=10$) | bAcc. | F1 | bAcc. | F1 | bAcc. | F1 | | - | Cross Entropy | 60.95 ± 1.22 | 59.30 ± 1.66 | 38.21 ± 1.12 | 29.40 ± 1.97 | 65.21 ± 1.40 | 55.43 ± 2.79 | | | Re-Weight | 65.52 ± 0.84 | 65.54 ± 1.20 | 44.52 ± 1.22 | 38.85 ± 1.62 | 70.17 ± 1.25 | 66.37 ± 1.73 | | | PC Softmax | 67.79 ± 0.92 | 67.39 ± 1.08 | 49.81 ± 1.12 | 45.55 ± 1.26 | 70.20 ± 0.60 | 68.83 ± 0.73 | | | DR-GCN | 60.17 ± 0.83 | 59.31 ± 0.97 | 42.64 ± 0.75 | 38.22 ± 1.22 | 65.51 ± 0.81 | 64.95 ± 0.53 | | | GraphSMOTE | 66.29 ± 0.93 | 66.30 ± 1.25 | 44.40 ± 1.27 | 39.10 ± 1.78 | 68.51 ± 1.14 | 62.63 ± 2.39 | | | BalancedSoftmax | 68.46 ± 0.67 | 68.41 ± 0.80 | 53.70 ± 1.40 | 50.73 ± 1.64 | 72.97 ± 0.80 | 70.80 ± 1.11 | | | + TAM | 69.90 ± 0.73 | 69.89 ± 0.89 | 55.54 ± 1.40 | 54.18 ± 1.69 | 74.13 ± 0.70 | 73.27 ± 0.67 | | | ReNode | 67.61 ± 0.77 | $67.\overline{27} \pm 0.91$ | 47.78 ± 1.67 | $42.\overline{51} \pm 2.\overline{30}$ | 71.59 ± 1.70 | 66.56 ± 2.90 | | | + TAM | 67.18 ± 1.32 | 67.39 ± 1.62 | 48.36 ± 1.63 | 42.48 ± 2.10 | 71.00 ± 1.86 | 67.18 ± 3.42 | | | GraphENS | 70.31 ± 0.51 | 70.30 ± 0.65 | 55.42 ± 1.74 | 53.85 ± 2.00 | 71.89 ± 0.80 | 71.07 ± 0.66 | | | + TAM | 71.52 ± 0.30 | 71.71 ± 0.45 | 57.47 ±1.56 | 56.23 ± 1.87 | 74.01 ± 0.73 | 72.41 ± 0.94 | | | | | | | | | | ### **Experiment: Heterophilous Graphs** - TAM also shows superior performance than baselines on heterophilous graphs - TAM could identify the outliers nodes by using the class-wise connectivity pattern and reduce the false positives stemming from these nodes | | Dataset | Chameleon | | Squirrel | | Wisconsin | | |-----|-----------------|-------------------------|-------------------------|-------------------------|------------------|------------------|------------------| | | Imbalance Ratio | $(\rho = 5)$ | | $(\rho = 5)$ | | $(\rho = 11.63)$ | | | | imparance Kano | bAcc. | F1 | bAcc. | F1 | bAcc. | F1 | | | Cross Entropy | 34.33 ± 0.74 | 31.54 ± 0.95 | 24.89 ± 0.37 | 21.33 ± 0.52 | 32.15 ± 2.72 | 30.92 ± 2.76 | | | Re-Weight | 39.63 ± 0.49 | 39.08 ± 0.50 | 26.49 ± 0.41 | 25.92 ± 0.41 | 42.15 ± 2.33 | 37.66 ± 2.27 | | | PC Softmax | 41.47 ± 0.78 | 40.51 ± 0.89 | 27.31 ± 0.51 | 26.74 ± 0.50 | 41.89 ± 3.95 | 38.03 ± 3.35 | | | DR-GCN | 36.85 ± 0.77 | 34.61 ± 0.62 | 25.40 ± 0.43 | 22.83 ± 0.59 | 33.93 ± 2.34 | 31.75 ± 2.50 | | Η | GraphENS | 40.66 ± 1.13 | 39.49 ± 1.10 | 26.87 ± 0.43 | 26.78 ± 0.41 | 40.93 ± 2.78 | 37.43 ± 2.74 | | GAT | BalancedSoftmax | 41.47 ± 0.71 | 40.52 ± 0.78 | 26.66 ± 0.39 | 25.97 ± 0.35 | 41.20 ± 3.08 | 37.93 ± 2.99 | | • | + TAM | 42.56 ± 0.59 | 41.40 ± 0.74 | 27.75 ± 0.44 | 27.23 ± 0.45 | 48.44 ± 3.32 | 43.71 ± 2.91 | | - | ReNode | 40.41 ± 0.56 | 39.85 ± 0.60 | 26.89 ± 0.45 | 26.40 ± 0.46 | 40.88 ± 2.84 | 37.13 ± 2.74 | | | + TAM | 41.53 ± 0.35 | 40.76 ± 0.50 | 26.53 ± 0.40 | 26.00 ± 0.42 | 46.64 ± 3.35 | 41.60 ± 3.02 | | - | GraphSMOTE | 42.27 ± 0.51 | 41.43 ± 0.54 | 28.17 ± 0.56 | 27.38 ± 0.66 | 40.77 ± 2.24 | 38.96 ± 2.48 | | | + TAM | 42.83 ± 0.82 | 42.26 \pm 0.83 | 28.44 \pm 0.33 | 28.02 ± 0.37 | 41.82 ± 2.94 | 38.23 ± 3.13 | #### **Conclusion** - We found that the adjacent major nodes of anomalously connected minor nodes are prone to be misclassified as the minor class - We propose TAM that adjusts margin according the extent of deviation from connectivity patterns and relative closeness to self class compared the target class - We show that combing TAM improves the performance on both homophilous and heterophilous graphs