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Non-Convex SGD under a generic tojasiewicz condition

Motivation and setup

From non-convex SGD to over-paramterized NNs
» Training neural networks is usually performed using non-convex SGD.

» Recent theoretical analyses show convergence of SGD to a zero training loss in the
over-parameterized setting (i.e. very large number of neurons and layer width).

> In this work, we analyze SGD under sub-Gaussian gradient noise to solve
min f(0) = E [£(g6(X), V)]
where ¢ is a loss function and gy is a model parameterized by 6 € R<.

SGD performance on CIFAR1O for different losses

Training loss f(8;)
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Non-Convex SGD under a generic tojasiewicz condition

Prior works and our contributions

The PL* condition
» Polyak-tojasiewicz (PL*) condition (Lojasiewicz, 1963; Liu et al., 2020):

Vo e B(bo, R),  |VF(O) =/ pf(0).

» Derived from uniform conditioning of the NTK (Jacot et.al., 2018; Liu et al., 2020).
» Limited to quadratic loss functions (e.g. MSE).

Our work
» Extends these results to a large class of losses, including cross entropy.
> Propose new conditions (KL* and SL*) that are more widely applicable.
> Derive high-probability concentration bounds for SGD under KL* and SL*.
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Non-Convex SGD under a generic tojasiewicz condition

Convergence of SGD under KL* and SL*

>

Kurdyka-tojasiewicz (KL*) condition (Kurdyka, 1998):

Vo e B(0o, k),  |VIO)|=¢(f(0)) .

v

Separable-Lojasiewicz (SL*) condition:

WeRs VIO 0 (@) - FO) (0 -6l | 4

First term depends on the regularity of the loss. =2

fe=1
Second term depends on the regularity of the model.

v

v

Theoretical results
> High-probability bounds on the approximation error of SGD.
» Sufficient control radius and convergence time to reach a given approx. error.
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Non-Convex SGD under a generic tojasiewicz condition

Application to Deep Learning

Assumptions
» Local smoothness of the neural network around initialization

» Uniform conditioning around initialization, NTK (Liu et al., 2020)
» Lipschitz and smooth loss function w.r.t. its first input.

Properties
Loss function MSE HL? CE? CE Logistic Strongly Convex Convex
Radius Q1) Q(1) Q (ln (g)) Q (1n (%)) Q (ln (g)) Q(1) Q(e™")
Time (GD) ( ( )) ( ( )) o1 o 1) oY) ( ( )) O(e~172%)
Time (SGD) O(e™2) O(e™?) O(e™%) O(e™%) O(e™%) O(e™?) O(e™474%)

» Convergence of SGD for arbitrary convex losses

» Flexible approach and robustness of SGD.



Thank you for your attention!
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