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Non-Convex SGD under a generic Łojasiewicz condition

Motivation and setup

From non-convex SGD to over-paramterized NNs
§ Training neural networks is usually performed using non-convex SGD.
§ Recent theoretical analyses show convergence of SGD to a zero training loss in the

over-parameterized setting (i.e. very large number of neurons and layer width).
§ In this work, we analyze SGD under sub-Gaussian gradient noise to solve

min
θPRd

fpθq fi E r`pgθpXq, Y qs

where ` is a loss function and gθ is a model parameterized by θ P Rd.
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Prior works and our contributions

The PL˚ condition
§ Polyak-Łojasiewicz (PL˚) condition (Lojasiewicz, 1963; Liu et al., 2020):

@θ P Bpθ0, Rq, }∇fpθq} ě
a

µfpθq .

§ Derived from uniform conditioning of the NTK (Jacot et.al., 2018; Liu et al., 2020).
§ Limited to quadratic loss functions (e.g. MSE).

Our work
§ Extends these results to a large class of losses, including cross entropy.
§ Propose new conditions (KL˚ and SL˚) that are more widely applicable.
§ Derive high-probability concentration bounds for SGD under KL˚ and SL˚.
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Convergence of SGD under KL˚ and SL˚

§ Kurdyka-Łojasiewicz (KL˚) condition (Kurdyka, 1998):

@θ P Bpθ0, Rq, }∇fpθq} ě ϕ pfpθqq .

§ Separable-Łojasiewicz (SL˚) condition:

@θ P Rd, }∇fpθq} ě φ pfpθ0q ´ fpθqqψ p}θ ´ θ0}q .

§ First term depends on the regularity of the loss.
§ Second term depends on the regularity of the model.

Theoretical results
§ High-probability bounds on the approximation error of SGD.
§ Sufficient control radius and convergence time to reach a given approx. error.
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Application to Deep Learning

Assumptions
§ Local smoothness of the neural network around initialization;
§ Uniform conditioning around initialization, NTK (Liu et al., 2020);
§ Lipschitz and smooth loss function w.r.t. its first input.

Properties

Loss function MSE HL2 CE2 CE Logistic Strongly Convex Convex

Radius Ωp1q Ωp1q Ω
´

ln
´

1
ε

¯¯

Ω
´

ln
´

1
ε

¯¯

Ω
´

ln
´

1
ε

¯¯

Ωp1q Ωpε´κq

Time (GD) O
´

ln
´

1
ε

¯¯

O
´

ln
´

1
ε

¯¯

Opε´1q Opε´1q Opε´1q O
´

ln
´

1
ε

¯¯

Opε´1´2κq

Time (SGD) rOpε´2q rOpε´2q rOpε´4q rOpε´4q rOpε´4q rOpε´2q rOpε´4´4κq

§ Convergence of SGD for arbitrary convex losses;
§ Flexible approach and robustness of SGD.
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Thank you for your attention!
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