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Introduction

We study the incremental autonomous exploration problem.
Large state space, unknown environment
Expand the range of known states, learn near-optimal policies
Applications: navigation in mazes, game playing and so on.
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Problem Definition

MDP M = ⟨S,A,P, c , s0⟩, Policy π : S → A
For any g ∈ S, denote tπg (s) := inf {t ≥ 0 : st+1 = g | s1 = s, π} .
Denote V π

g (s) as the expected cost to reach g from s using policy π.

V π
g (s) = E

[∑tπg (s)

t=1 ct (st , π (st)) | s1 = s
]
,

Qπ
g (s, a) = E

[∑tπg (s)

t=1 ct (st , π (st)) | s1 = s, π(s1) = a
]
.

Exploration radius: L

Objective: learn the set of incrementally controllable states S→
L
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Problem Definition: Multi-Goal Stochastic Shortest Path

MDP M = ⟨S,A,P, c , s0⟩, and S→
L = S

Input: error ε, confidence δ ∈ (0, 1), goal space G ⊆ S
Output: a set of policies {πs}s∈G , s.t.

∀s ∈ G,V πs
s (s0) ≤ V ∗

s (s0) + εL.

Denote T as the total number of steps the agent uses

Use CT :=
T∑
t=1

ct(st , at) to measure the performance
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Problem Definition: Autonomous Exploration (AX)

MDP M = ⟨S,A,P, c , s0⟩
Input: exploration radius L, error ε, confidence δ ∈ (0, 1)
Output: a set of states K ⊇ S→

L and a set of policies {πs}s∈K, s.t.

∀s ∈ S→
L ,V πs

s (s0) ≤ (1 + ε)L.
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Comparison

Algorithm Sample Complexity

UcbExplore
(Lim & Auer, 2012)

Õ(L3S2A/ε3)

DisCo
(Tarbouriech et al., 2020)

Õ
(
L3S2A/ε2)

VALAE Õ
(
LSA/ε2)

Lower Bound Ω(LSA/ε2)

Table: Comparisons between our results and prior results.
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Our Algorithm

Step 1: run DisCo with ε = 1
discover a set K s.t. S→

L ⊆ K ⊆ S→
2L

Step 2: reduce AX to multi-goal SSP
merge all s /∈ K, construct MDP M†,
collect samples for all (s, a) ∈ K×A
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Our Algorithm

Step 3: solve multi-goal SSP on M†

Phase (a):
compute optimal policy π̃ with goal g

Phase (b):
execute π̃ for λ = Õ(1/ϵ2) times
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Our New Techniques

Connection between AX and Multi-Goal SSP
Intuition: exploit variance information in value functions
extend Bernstein-type bounds from single-goal SSP to multi-goal SSP

Using Regret to Bound the Sample Complexity
Intuition: use regret to bound the total number of rounds r

For the upper bound, we extend variance analysis from classical SSP.
For the lower bound, the total regret in all the failure rounds grows
linearly, and we use concentration inequalities to lower bound the total
regret in success rounds and skipped rounds.
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Lower Bound

Figure: Illustration of our construction of the hard MDP.

Action a∗ in s1: the blue edges Other actions in s1: the dashed edges

If πg (s1) = a∗, we have V
πg
g (s0) = L. Otherwise, V πg

g (s0) > (1 + ε)L.
To discriminate two Bernoulli distributions with p1 = 2

L and p2 = 2
(1+6ε)L

among all the A actions, the algorithm needs Ω̃(LA/ε2) samples.
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Summary

New Algorithm: Value-Aware Autonomous Exploration (VALAE)
First algorithm enjoying near-optimal sample complexity bound
Õ
(
LSA/ε2

)
Use DisCo as initial steps and use the estimated value functions to guide
our exploration
Connect autonomous exploration to multi-goal stochastic shortest path
New analysis techniques: using concentration inequalities to lower bound
the regret

First lower bound for autonomous exploration: Ω(LSA/ε2)

Use the techniques of KL divergence
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Thanks for listening!
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