Near-Optimal Algorithms for Autonomous Exploration

and Multi-Goal Stochastic Shortest Path

Haoyuan Cai, Tsinghua University
Tengyu Ma, Stanford University

Simon Du, University of Washington

1/12



Introduction

@ We study the incremental autonomous exploration problem.
o Large state space, unknown environment
@ Expand the range of known states, learn near-optimal policies

@ Applications: navigation in mazes, game playing and so on.
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Problem Definition

MDP M = (S, A,P,c,sp), Policy m: S — A
For any g € S, denote t7 (s) :=inf{t >0:s11=g|s1=5s,7}.

Denote V() as the expected cost to reach g from s using policy .

Vi(s) = E[TEY et (sem(se)) | 51 = 5]
Qg(s, a)=E [ & (s ce(st,m(st)) | s1=s,m(s1) = a} )

Exploration radius: L

Objective: learn the set of incrementally controllable states S;”
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Problem Definition: Multi-Goal Stochastic Shortest Path

MDP M = (S, A,P,c,s), and §;7 =S
Input: error ¢, confidence 6 € (0,1), goal space G C S

Output: a set of policies {7s}seg, s.t.
Vs € G, VI (s0) < Vi (s0) + L.

@ Denote T as the total number of steps the agent uses

T
Use Ct := > ce(st, a¢) to measure the performance
t=1

4/12



Problem Definition: Autonomous Exploration (AX)

e MDP M = (S, A,P,c,sy)
@ Input: exploration radius L, error €, confidence § € (0,1)

@ Output: a set of states L O S;” and a set of policies {7s}sckc, s.t.

Vs e 87, VI (s0) < (1+¢)L.
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Comparison

Algorithm Sample Complexity
(umugibiﬁilfr;m) O(L35%A/<%)
(TarbourieELsiSal., 2020) 0 (L352A/52)
VALAE O (LSA/<?)
Lower Bound Q(LSA/<?)

Table: Comparisons between our results and prior results.

6/12



Our Algorithm

1
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: Input: Confidence 6 € (0,1),errore € (0,1],and L > 1. . . .
- Tnput (for multi-goal SSP only): Goal Space G C S. @ Step 1: run DisCo withe =1
. (For autonomous exploration, set G = @ ) . —
" Specify: Trigger set A ¢ {27! n discover a set K s.t. S C K C
\We run DisCo algorithm with e = 1 and qu/ a set KC such
that S C K C 837
5: Run DisCo algorithm with input (4, = 1, L) and we get a

set KC and a set of policies {. }ecxc. @ Step 2: reduce AX to multi-goal SSP
6: Run Alg. I with input (3, L, K, {7, }<ex ), and we obtain the
variables N (), n(), P, 6(), . merge all s ¢ K, construct MDP M,

7: Set time step ¢ < 1 and trigger index j < 5 + log, L:?
8: Sete <« /3, B+ 10L, A = O(1/€%), and g + s.

9: Initialize G < Kif G = (). )
10: \\Solve multi-goal SSP problem on M with goal space G.

collect samples for all (s,a) € K x A
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Our Algorithm
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forround r =1,2,--- do
\Phase (a): Compute Optimal Policy
Compute (Q, V') := VISGO(g,277 /(|KT|A)).
Set the policy 7 as the greedy policy over @, and 7 < 0.
WPhase (b): Policy Evaluation
forepisode k = 1,2,--- , A do
Set s¢ + so and reset to the initial state so, and 7 — 0.
while s, # g do
Take action @ = arg minaea Q(s¢, ) on M, incur
cost ¢, and observe next state .1 ~ PT(- | s,,a,).
Set (s,a,5",¢) 4= (s, ae, 5041, ¢) and £+t + 1.
Set N (s, a) <« N(s,a)+1,6(s,a) < 0(s,a) +c.
N(s,a,s") « N(s,a,s") + 1.
if N(s,a) € N then
Setj +j+1.¢(s,a) + 2\65‘1

Forall ¢’ € KT, setn(s,a) & N(s,a), P, o
N(s,a,s')/N(s,a).
Return to line 11, start a new round (the current
round has been a skipped round).
end if
Setf + 7+ £, 7 + T + ¢
end while
if 7 > V(so) + €L then
Return to line 11, start a new round. (the current round
has been a failure round).
end if
end for
Set g +— 7. Remove g from G. (The current round has
been a success round.)
Choose another state g € G.
Stop the algorithm if G is empty.
end for

and f(s,a) < 0.

Step 3: solve multi-goal SSP on M

Phase (a):
compute optimal policy 7 with goal g

Phase (b):

execute 7 for A = O(1/€) times
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Our New Techniques

@ Connection between AX and Multi-Goal SSP
Intuition: exploit variance information in value functions
extend Bernstein-type bounds from single-goal SSP to multi-goal SSP

@ Using Regret to Bound the Sample Complexity
Intuition: use regret to bound the total number of rounds r

For the upper bound, we extend variance analysis from classical SSP.
For the lower bound, the total regret in all the failure rounds grows
linearly, and we use concentration inequalities to lower bound the total
regret in success rounds and skipped rounds.
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Figure: Illustration of our construction of the hard MDP.

Action a* in s1: the blue edges  Other actions in s;: the dashed edges

If mg(s1) = a*, we have Vg#(sp) = L. Otherwise, Vg#(sp) > (1 +¢)L.

To discriminate two Bernoulli distributions with p; = % and pp = ﬁ

among all the A actions, the algorithm needs Q(LA/=2) samples.
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o New Algorithm: Value-Aware Autonomous Exploration (VALAE)
o First algorithm enjoying near-optimal sample complexity bound
0 (LSA/2)
e Use DisCo as initial steps and use the estimated value functions to guide
our exploration
e Connect autonomous exploration to multi-goal stochastic shortest path
o New analysis techniques: using concentration inequalities to lower bound
the regret
o First lower bound for autonomous exploration: Q(LSA/e?)
e Use the techniques of KL divergence
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Thanks for listening!



