
Composite ERM

min
w∈Rp

F (w) =
1

n

n∑
i=1

`(w; di)︸ ︷︷ ︸
f(w)

+

p∑
j=1

ψj(wj)︸ ︷︷ ︸
ψ(w)

` is convex, smooth, ψ is convex

Goal: (ε, δ)-DP solver?
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The Classical: DP-SGD

Choose i ∼u {1, . . . , n}
Update

wt+1 = proxψ
(
wt−η

(
∇`(wt; di)+N (σ21p)

))

With σ2 ∝ T

n2ε2
Λ2 assuming |∇`(w; ·)| ≤ Λ
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wt+1 = proxψ
(
wt−η

(
∇`(wt; di)+N (σ21p)

))
With σ2 ∝ T

n2ε2
Λ2 assuming |∇`(w; ·)| ≤ Λ

Two drawbacks:

◦ Relies on privacy amplification

◦ Oblivious to imbalanced gradients
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Our method: DP-CD

Choose j ∼u {1, . . . , p}
Update

wt+1
j = proxηjψj

(
wt
j−ηj

(
∇jf (w

t)+N (σ2
j)
))

With σ2
j ∝

T

n2ε2
L2
j assuming |∇jf(w)| ≤ Lj
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Utility: E[F (w)− F ∗] ≤

Õ

(√
p

nε
‖L‖M−1

∥∥w0 − w∗
∥∥
M

)

Where F is convex and

◦ ‖L‖M−1 =
√∑p

j=1L
2
j/Mj

◦
∥∥w0 − w∗

∥∥
M−1 =

√∑p
j=1Mj(w

0
j − w∗j )2(

And f is Lipschitz |f(w)− f(w + tej)| ≤ Lj |t|
Smooth |∇f(w)−∇f(w + tej)| ≤Mj |t|

)
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And f is Lipschitz |f(w)− f(w + tej)| ≤ Lj |t|

Smooth |∇f(w)−∇f(w + tej)| ≤Mj |t|

)

We also prove:

◦ Results for strongly-convex F

◦ Corresponding lower bounds
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Logistic Regression, Electricity dataset
(n = 45k, p = 8, ε = 1, δ = 1

n2 )

Raw data
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Come to our poster to discuss:

◦ non-asymptotic results

◦ lower bounds
◦ practical implementation

– clipping thresholds
– estimation of the constants

◦ more experiments
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