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Goals

Condition Transformer-based Language Models (TLMs) are:

o Expensive to condition (re-training [1], using additional parameters [2]).

e Perpetuated data bias [3].
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[3] Abid, A., Farooqi, M., and Zou, J. Large language models associate muslims with violence. Nature Machine Intelligence, 3, 2021.
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Efficient conditioned generation
Study about mitigating gender bias via conditioning.

Open-ended fine-grained conditioning.
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px|c)

e

Generation of a sentence X
conditioned to concept ¢

[4] Yang, Kevin, and Dan Klein. "FUDGE: Controlled Text Generation With Future Discriminators." NAACL, 2021.
[5] Dathathri, Sumanth, et al. "Plug and play language models: A simple approach to controlled text generation." ICLR, 2020.



Conditioned Language Model

p(x|c) «x p(c|x)p(x)

e

Generation of a sentence X
conditioned to concept ¢

[4] Yang, Kevin, and Dan Klein. "FUDGE: Controlled Text Generation With Future Discriminators." NAACL, 2021.
[5] Dathathri, Sumanth, et al. "Plug and play language models: A simple approach to controlled text generation." ICLR, 2020.



Conditioned Language Model

p(x|c) «x p(c|x)p(x)

/ N\

Generation of a sentence X Expert model at

conditioned to concept ¢ generating realistic
sentences X

[4] Yang, Kevin, and Dan Klein. "FUDGE: Controlled Text Generation With Future Discriminators." NAACL, 2021.
[5] Dathathri, Sumanth, et al. "Plug and play language models: A simple approach to controlled text generation." ICLR, 2020.



Conditioned Language Model

p(x|c) «x p(c|x)p(x)

SN

Generation of a sentence X Expert model Expert model at
conditioned to concept ¢ detecting generating realistic
concept ¢ In X sentences X

[4] Yang, Kevin, and Dan Klein. "FUDGE: Controlled Text Generation With Future Discriminators." NAACL, 2021.
[5] Dathathri, Sumanth, et al. "Plug and play language models: A simple approach to controlled text generation." ICLR, 2020.



Conditioned Language Model

p(x|c) «x p(c|x)p(x)

SN

Generation of a sentence X Expert model Expert model at
conditioned to concept ¢ detecting generating realistic
concept ¢ In X sentences X

FUDGE [4] and PPLM [5] = External p(c | x)

[4] Yang, Kevin, and Dan Klein. "FUDGE: Controlled Text Generation With Future Discriminators." NAACL, 2021.
[5] Dathathri, Sumanth, et al. "Plug and play language models: A simple approach to controlled text generation." ICLR, 2020.



Conditioned Language Model

p(x|c) «x p(c|x)p(x)

SN

Generation of a sentence X Expert model Expert model at
conditioned to concept ¢ detecting generating realistic
concept ¢ In X sentences X

FUDGE [4] and PPLM [5] = External p(c | x)
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Concepts

Represent concepts with positive and negative sentences [6]

Positive sentences Negative sentences
Sense Contain keyword with WordNet sense [/] Do NOT contain keyword
Homograph Contain keyword with WordNet sense [7] Contain same keyword with different sense [7]
Abstract Contain abstract concept (ie. Sentiment) Do NOT contain concept

[6] Bianca Scarlini, Tommaso Pasini, and Roberto Navigli. Just “OneSec” for producing multilingual sense-annotated data. ACL 2019.
[7] Princeton University. Wordnet: A lexical database for english. https://wordnet.princeton.edu.
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Understand which concepts are learnt in a Language Model (LM)

Contain concept ¢ (y = 1)

pos sentence 1 \

pos sentence 2
pos sentence 3

Do NOT contain concept ¢ (y = 0)

neg sentence 1
neg sentence 2
neg sentence 3

LM

Is neuron 1 a good classifier
for concept c?

Sentence | Response
label neuron |
0.83
1.74
0.98
0 0.12
0 0.06

1.01

e e —————

—p (APi=0387 )

Unit expertise for concept ¢



Conditioning Based on Expert Units

What is the expert unit’s “active” value?
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Conditioning Based on Expert Units

What is the expert unit’s “active” value?
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Conditioned Language Model

Expert units (highest AP) p(X | C) X p(C | X) p(X)

Intervention on k expert units

Generate text with a concept
Football

Once upon a
—> time, a player
kicked a ball

ko
% —

No training, no fine-tuning Once upon a
time

Applicable to any pre-trained LM % = do(c,k): z; < 2 intervention
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Parity vs. Model bias
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Parity vs. Model bias
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Conclusion

Defined expert units, and their role in text generation.
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Conclusion

Defined expert units, and their role in text generation.

Inference-time intervention on expert units for controlled generation.

Thorough analysis on 1037 contexts related to gender bias.

- Our method achieves parity at lower perplexity and higher diversity than
FUDGE and PPLM-BoW.

 Our conditioning Is correlated with the model bias.

Open ended conditioned generation (in paper)

Paper: https://arxiv.org/abs/2110.02802
Code: https://github.com/apple/ml-selfcond
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