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Goals

Condition Transformer-based Language Models (TLMs) are:


• Expensive to condition (re-training [1], using additional parameters [2]).


• Perpetuated data bias [3].

[1] Keskar, N. S., McCann, B., Varshney, L., Xiong, C., and Socher, R. CTRL - A Conditional Transformer Language Model for Controllable 
Generation. arXiv preprint, 2019.

[2] Yang, K. and Klein, D. Fudge: Controlled text generation with future discriminators. NAACL, 2021.

[3] Abid, A., Farooqi, M., and Zou, J. Large language models associate muslims with violence. Nature Machine Intelligence, 3, 2021.  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Efficient conditioned generation


Study about mitigating gender bias via conditioning.


Open-ended fine-grained conditioning.
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Represent concepts with positive and negative sentences [6]


[6] Bianca Scarlini, Tommaso Pasini, and Roberto Navigli. Just “OneSec” for producing multilingual sense-annotated data. ACL 2019.
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Positive sentences Negative sentences
Sense Contain keyword with WordNet sense [7] Do NOT contain keyword

Homograph Contain keyword with WordNet sense [7] Contain same keyword with different sense [7]

Abstract Contain abstract concept (ie. Sentiment) Do NOT contain concept

… … …

Represent concepts with positive and negative sentences [6]
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What is the expert unit’s “active” value?
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Once upon a 
time

Once upon a 
time, a player 
kicked a ball

Football

max

=      interventiondo(c, k) : zi ← ̂zc
i

p(x |c) ∝ p(c |x) p(x)

No training, no fine-tuning


Applicable to any pre-trained LM

Expert units (highest AP)

Generate text with a concept

Intervention on  expert unitsk

Conditioned Language Model



1037 prompts with stereotypical gender bias from [8].

GPT2-medium conditioned on concepts  and .c = woman c = man

[8] Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D., Sakenis, S., Huang, J., Singer, Y., and Shieber, S. Causal mediation analysis for 
interpreting neural NLP: The case of gender bias. NeurIPS, 2020. 
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Perplexity ⬇ Self-BLEU - 3 ⬇

PPLM-BoW >250 0.46

FUDGE 85 0.30

Ours 65 0.13

 Metrics evaluated at parity: Δp(c, ⋅ ) = 0



Parity vs. Model bias

°0.50 °0.25 0.00 0.25
Uncond. bias (¢p(c, ∏ = 0))

0

5

P
ar

it
y

p
oi

nt

FUDGE, do(woman, ∏)

r = °0.764

°0.25 0.00 0.25
Uncond. bias (¢p(c, ∏ = 0))

0

5

P
ar

it
y

p
oi

nt

FUDGE, do(man, ∏)

r = °0.098

°0.25 0.00
Uncond. bias (¢p(c, step = 0))

0.1

0.2

0.3

P
ar

it
y

p
oi

nt

PPLM-BoW, do(woman, step)

r = °0.686

°0.25 0.00 0.25
Uncond. bias (¢p(c, step = 0))

0.0

0.1

0.2

P
ar

it
y

p
oi

nt

PPLM-BoW, do(man, step)

r = 0.502

°0.5 0.0
Uncond. bias (¢p(c, k = 0))

0

10

20

P
ar

it
y

p
oi

nt

Ours, do(woman, k)

r = °0.806

0.0 0.5
Uncond. bias (¢p(c, k = 0))

0

20

P
ar

it
y

p
oi

nt

Ours, do(man, k)

r = 0.650



Parity vs. Model bias

Our conditioning is better correlated 
with the intrinsic model bias.
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Conclusion

Defined expert units, and their role in text generation.

Inference-time intervention on expert units for controlled generation.

Thorough analysis on 1037 contexts related to gender bias.
• Our method achieves parity at lower perplexity and higher diversity than 
FUDGE and PPLM-BoW.

• Our conditioning is correlated with the model bias.

Open ended conditioned generation (in paper)
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