

Rethinking Attention-Model Explainability through Faithfulness Violation Test

Yibing Liu Haoliang Li Yangyang Guo Chengi Kong Jing Li Shiqi Wang

The 39th International Conference on Machine Learning (ICML 2022)

Motivation

Attention weights can be always non-negative.

$$A = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_h}}) \quad \text{(Vaswani et al., 2017)}$$

Motivation

Attention weights can be always non-negative.

$$A = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_h}}) \quad \text{(Vaswani et al., 2017)}$$

But do **positive** attention weights indicate that features **contribute** to model predictions?

Motivation

Do positive attention weights indicate contribution effects? No!

Question1: What are colorful pieces on the doughnut?

Question2: What is the girl eating?

Pred: donut (Confidence 12%1) X

How to evaluate the explanation faithfulness?

Evaluating two properties in explanation weights

– Importance Correlation:

Magnitude <-> Feature Importance

– Polarity Consistency:

Sign <-> Polarity of Feature Impact

How to evaluate the explanation faithfulness?

Evaluating two properties in explanation weights

Importance Correlation:

Magnitude <-> Feature Importance

Previous Work

– Polarity Consistency:

Sign <-> Polarity of Feature Impact

How to evaluate the explanation faithfulness?

Evaluating two properties in explanation weights

– Importance Correlation:

Magnitude <-> Feature Importance

Polarity Consistency:

Sign <-> Polarity of Feature Impact

Work

Idea: measure the ratio of test samples violating polarity consistency.

Idea: measure the ratio of test samples violating polarity consistency.

Steps: given a test sample x and an explanation method $w(\cdot)$:

Idea: measure the ratio of test samples violating polarity consistency.

Steps: given a test sample x and an explanation method $w(\cdot)$:

1. Find the most influential feature $x^* = \operatorname{argmax}_{x_i \in x} ||w(x_i)||$.

Idea: measure the ratio of test samples violating polarity consistency.

Steps: given a test sample x and an explanation method $w(\cdot)$:

- 1. Find the most influential feature $x^* = \operatorname{argmax}_{x_i \in x} ||w(x_i)||$.
- 2. Estimate the feature impact of x^* based on the perturbation test

$$\Delta C(x, x^*) = f(x)_{\hat{y}} - f(x \backslash x^*)_{\hat{y}}.$$

Idea: measure the ratio of test samples violating polarity consistency.

Steps: given a test sample x and an explanation method $w(\cdot)$:

- 1. Find the most influential feature $x^* = \operatorname{argmax}_{x_i \in x} ||w(x_i)||$.
- 2. Estimate the feature impact of x^* based on the perturbation test

$$\Delta C(x, x^*) = f(x)_{\hat{y}} - f(x \backslash x^*)_{\hat{y}}.$$

3. Check if the explanation weight aligns with the feature impact.

Violation =
$$\mathbb{1}_{\operatorname{sign}(w(x^*)\cdot\Delta\mathrm{C}(x,x^*))<0}$$

Experiments

- RQ1: Why we need the faithfulness violation test?
- RQ2: How existing methods perform on faithfulness?
- RQ3: What factors dominate the faithfulness violation issue?

Method	Denoted	Basis	
Generic attention-based explanation methods			
Inherent Attention Explanation	RawAtt	lpha	
Attention ⊙ Gradient	AttGrad	$lpha \odot abla lpha$	
Attention · InputNorm	AttIN	$lpha \odot v(x) $	
Transformer-based explanation methods			
Partial LRP	PLRP	R^{lpha}	
Attention Rollout	Rollout	lpha	
Transformer Attention Attribution	TransAtt	$ abla lpha \odot \mathrm{R}^{lpha}$	
Generic Attention Attribution	GenAtt	$lpha \odot abla lpha$	
Gradient-based attribution methods			
Input ⊙ Gradient	InputGrad	$x\odot abla x$	
Integrated Gradients	IG	$x\odot abla x$	

Comparison with Existing Metrics (RQ1)

Existing metrics are incapable of examining the polarity consistency!

Comparison with Existing Metrics (RQ1)

Existing metrics are incapable of examining the polarity consistency!

Sanity Faithfulness Evaluation (RQ2)

Most tested explanation methods suffer from the faithfulness violation issue regarding polarity consistency.

Sanity Faithfulness Evaluation (RQ2)

Most tested explanation methods suffer from the faithfulness violation issue regarding polarity consistency.

Factor Analysis (RQ3)

Two dominant factors

- The capability to identify polarity
- The complexity of model architectures

Method	Yelp	AgNews	VQA 2.0
α	0.31	0.28	0.40
$lpha \odot abla lpha$	0.02	0.03	0.06
$\alpha\odot \nabla\alpha $	0.15	0.07	0.25
$\alpha\odot\mathrm{sign}(\nabla\alpha)$	0.16	0.18	0.27

Thank you!

