

On Convergence of Gradient Descent Ascent: A Tight Local Analysis

Haochuan Li (MIT), Farzan Farnia (CUHK),
Subhro Das (IBM Research), Ali Jadbabaie (MIT)

Background

- Minimax Optimization:

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}; \mathbf{y})$$

- Applications: GAN, Adversarial Training, RL, etc.
- Gradient Descent Ascent (GDA) Algorithm

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \eta_{\mathbf{x}} \nabla_{\mathbf{x}} f(\mathbf{x}^k; \mathbf{y}^k),$$

$$\mathbf{y}^{k+1} = \mathbf{y}^k + \eta_{\mathbf{y}} \nabla_{\mathbf{y}} f(\mathbf{x}^k; \mathbf{y}^k).$$

A gap between theory and practice on the ratio $r = \frac{\eta_{\mathbf{y}}}{\eta_{\mathbf{x}}}$

Empirical Observations

- Practical GAN training often chooses similar stepsizes for both players, i.e., $\eta_x \approx \eta_y$ and $r = \Theta(1)$

(a)

(b)

Figure 1. Generated images of the learned generator on MNIST (a) and CIFAR10 (b). For both MNIST and CIFAR10, we train WGAN-GP models (Gulrajani et al., 2017) using simultaneous GDA with $\eta_x = \eta_y = 0.001$.

Existing Theory

Theorem ((Lin et al., 2020a), informal). Suppose f is L smooth and $f(\mathbf{x}, \cdot)$ is μ strongly concave for any fixed \mathbf{x} . Choosing $\eta_{\mathbf{x}} = \Theta(\frac{1}{\kappa^2 L})$ and $\eta_{\mathbf{y}} = \Theta(\frac{1}{L})$. The gradient complexity of GDA is bounded by $\mathcal{O}(\kappa^2/\epsilon^2)$ where $\kappa = L/\mu$ is the condition number and ϵ is the level of stationarity.

- Suggested stepsize ratio: $r = \Theta(\kappa^2)$

Motivation

- Gap between theory and practice:
 - Practice: $r = \Theta(1)$
 - Theory: $r = \Theta(\kappa^2)$
- Question:
 - *What is the best stepsize ratio that ensures convergence of GDA and what is the corresponding convergence rate?*
- This work:
 - A tight local analysis on convergence of GDA near a Stackelberg Equilibrium

Preliminaries

Definition (Stackelberg Equilibrium, informal) A point $z^* = (x^*, y^*)$ is a differential Stackelberg Equilibrium if

- z^* is a stationary point of f ;
- $f(x^*, \cdot)$ is locally μ strongly concave;
- The primal function $\Phi(\cdot) = \max_{\mathbf{y} \in \mathcal{Y}} f(\cdot; \mathbf{y})$ is locally $\mu_{\mathbf{x}}$ strongly convex.

Assume f is L smooth and denote condition numbers

$$\kappa = L/\mu, \quad \kappa_{\mathbf{x}} = L/\mu_{\mathbf{x}}.$$

Theoretical Results

- Phase transition point:
 - If $r \leq \kappa$, there exist a hard function s.t. GDA diverges
 - If $r > \kappa$, GDA provably converges
- Optimal rate: (with matching upper/lower bounds)

$$\tilde{\mathcal{O}}(\kappa \kappa_x)$$

- under stepsize choice $\eta_x = \Theta(1/\kappa L)$, $\eta_y = \Theta(1/L)$, $r = \Theta(\kappa)$
- Same rate as running GD directly on the primal function

$$\Phi(\cdot) = \max_{\mathbf{y} \in \mathcal{Y}} f(\cdot; \mathbf{y})$$

- Extension to SGDA and EG

Takeaway

- A wide gap between theory and practice on the stepsize ratio of GDA
- A tight local analysis on GDA near a Stackelberg Equilibrium