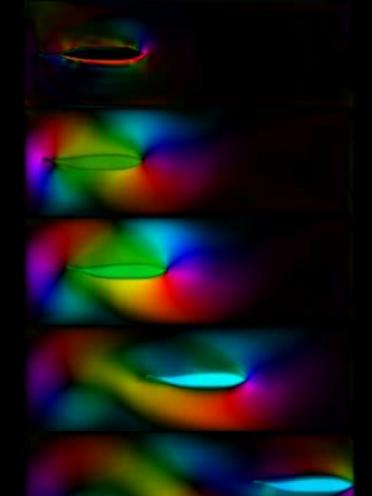
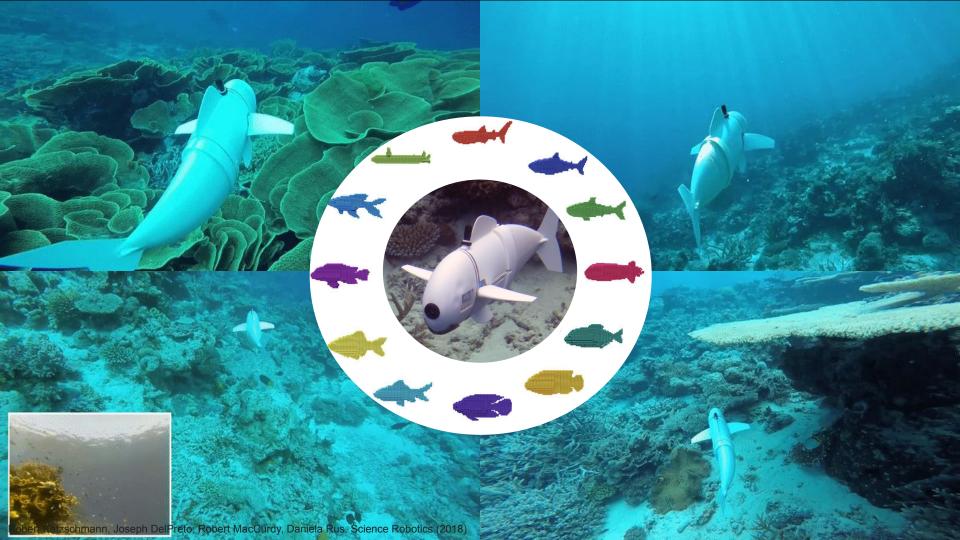
Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models

ICML 2022 Short Presentation

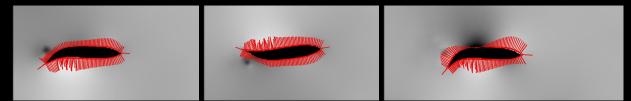
Elvis Nava ETH Zurich, ETH AI Center, Soft Robotics Lab





Our Goal: Differentiable Fast Multiphysics Simulation for Optimization

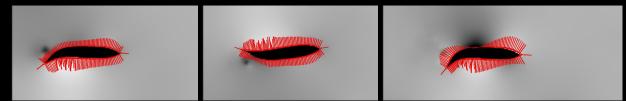
Our Goal: Differentiable Fast Multiphysics Simulation for Optimization



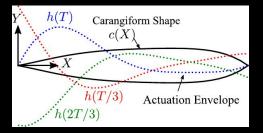
Coupling a Soft Body Simulation with NN-based Hydrodynamics

4

Our Goal: Differentiable Fast Multiphysics Simulation for Optimization



Coupling a Soft Body Simulation with NN-based Hydrodynamics

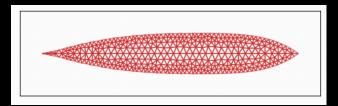


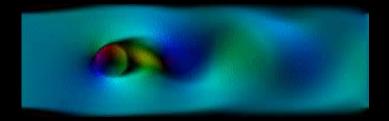
Directly Optimize Swimmer Policy Parameters

Simulation Techniques

Numerical Soft Body Simulation

Learned Physics-Informed Neural Network for Hydrodynamics

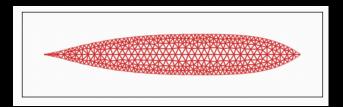




Simulation Techniques

Numerical Soft Body Simulation

DiffPD: fast, differentiable method for soft body simulation using implicit Euler

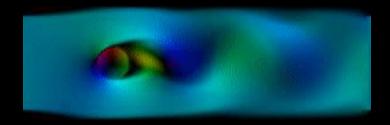


Du, T., Wu, K., Ma, P., Wah, S., Spielberg, A., Rus, D. and Matusik, W., 2021. Diffpd: Differentiable projective dynamics. ACM Transactions on Graphics (TOG), 41(2), pp.1-21.

Simulation Techniques

Learned Physics-Informed Neural Network for Hydrodynamics

Wandel et al. surrogate method to solve Incompressible Navier Stokes with a **Physics-Constrained Loss**

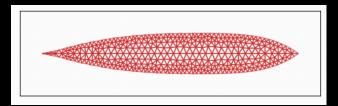


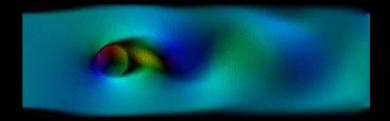
Wandel, N., Weinmann, M. and Klein, R., 2020, September. Learning Incompressible Fluid Dynamics from Scratch-Towards Fast, Differentiable Fluid Models that Generalize. In International Conference on Learning Representations.

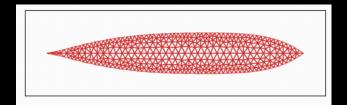
How to connect the two physical systems? Important: **allowing gradient propagation**

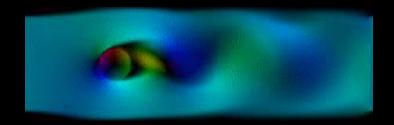
Numerical Soft Body Simulation

Learned Physics-Informed Neural Network for Hydrodynamics

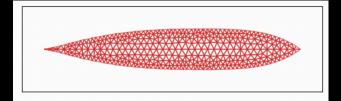


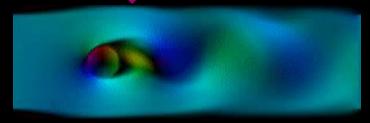




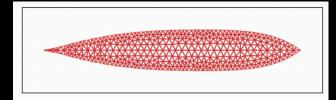


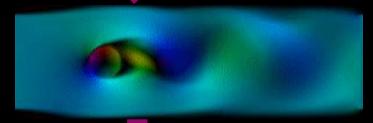
Fluid boundary condition Fish position and velocity



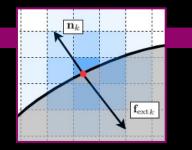


Fluid boundary condition Fish position and velocity



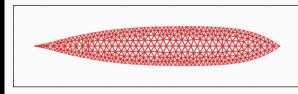


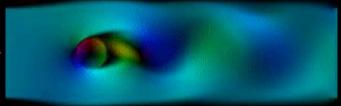
Thrust from surface pressure



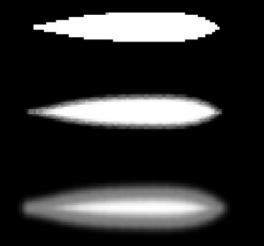
Solid to Fluid Interaction

Fluid boundary condition Fish position and velocity



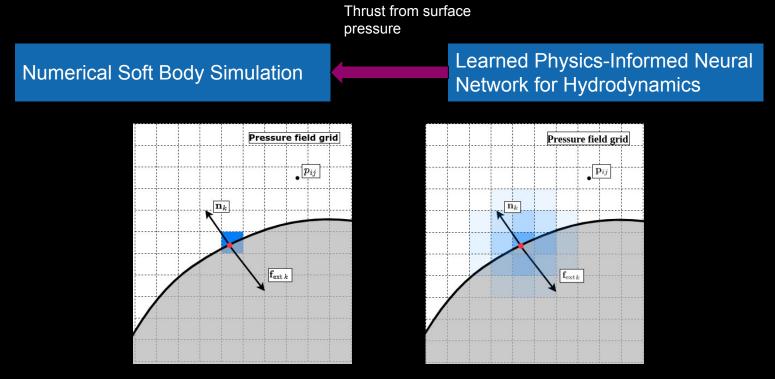


To make the boundary mask **differentiable**, we use **soft rasterization**.



smoother

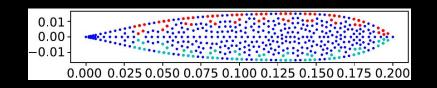
Fluid to Solid Interaction



To make the computed thrust **differentiable**, we use an **Immersed Boundary Method** with Gaussian distances.

Simulated Soft Body Fish

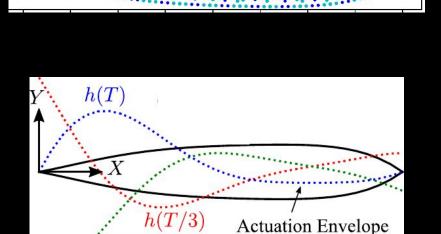
Our method is tested on a Carangiform Swimmer, composed of discretized FEM elements.



Simulated Soft Body Fish

Our method is tested on a Carangiform Swimmer, composed of discretized FEM elements.

 Its actuation signal is determined by an Actuation Envelope h(T).



h(2T/3)

Optimize the parameters of the actuation signal function, To **maximize** the swimmer's forward thrust.

Result: An optimized swimming frequency for maximum velocity

