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Outline

“How does the strength of a synapse need to be
changed to improve the system’s
global behaviour?”

Spatial Credit Assignment




Spatial credit assignment. backpropagation
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Research Question

“Is gradient-based credit assignment possible without the need for the
weak-feedback assumption?”



Strong-DFC: intuition
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Strong-DFC: dynamics
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Controller signal (feedback signal):
integrates the error signal

true

e(t)=r; —rr(t), r; =r;

Feedback weights

flexible feedback connectivity constraints



Strong-DFC: minimizing control

controller
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Amount of control: H = HQussH%

“Every neuron tries to minimize its feedback input”




Strong-DFC: minimizing control

training

____________

Goal of training: update the
forward weights to reduce the
amount of control needed to

reach ry"e

Minimizing 7 leads to minimizing L:
H=||Quyl|? =0 < L(ry,r"¢) =0



Strong-DFC: noise robustness

MNIST (%) Fashion MNIST (%)
BP 1.83 +0.11 10.60 = 0.44
Strong-DFC (noise) 2.19 £+ 0.05 12.07 + 0.16
DFC (noise) 15.15 + 0.44 16.29 + 0.41
Strong-DFC (no noise) 1.98 + 0.05 11.36 +0.17

DFC (no noise) 2.09 +£0.10 11.31 +0.14



Conclusions

e Principled credit assignment with strong feedback

e Flexible constraints on the feedback mappings

e Enables simultaneous learning of feedback and feedforward weights

e Novel view on optimization as minimizing control

e Itworks!
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Thank you! Discussion?

At ICML in person!:)
(also: mtristany@ethz.ch)




