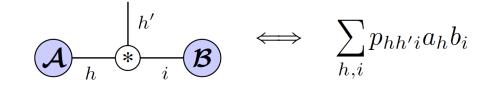
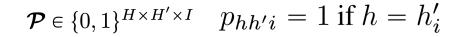
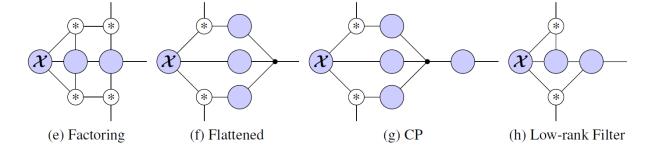
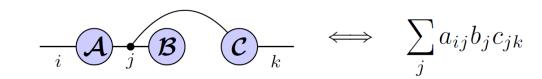

A Unified Weight Initialization Paradigm for Tensorial Convolutional Neural Networks


Yu Pan¹, Zeyong Su², Ao Liu³, Jingquan Wang¹, Nannan Li^{4,5}, Zenglin Xu^{1,6*}

¹Harbin Institute of Technology Shenzhen, Shenzhen, China ²University of Electronic Science and Technology of China, Chengdu, China ³Tokyo Institute of Technology, Tokyo, Japan ⁴State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China ⁵School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China ⁶Pengcheng Laboratory, Shenzhen, China


Tensorial Convolutional Neural Networks (TCNNs)





(a) Standard

$$h_i' = (h'-1)S + i - P$$

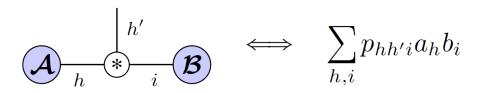
Denoting convolutional operation with tensor diagram

Consider some questions:

For a unknown tensorial CNN,

whether we need to analyze its data-flow to derive its initialization

- time and resource consuming
- For a NAS, if it found a pretty special structure,


how to train it for a stable performance

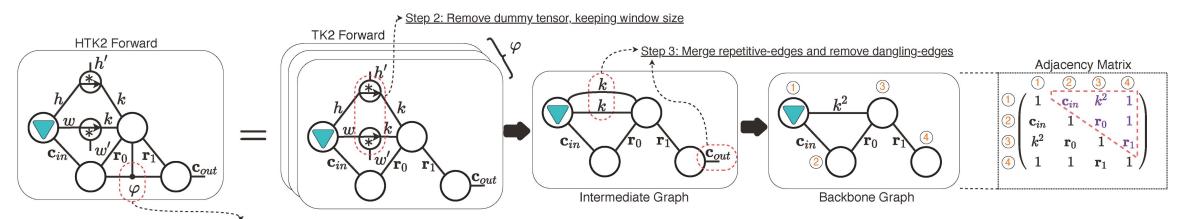
a fatal shortage for NAS

Is there any initializing Principle for arbitrary tensorial CNNs?


Two Correction on Dummy Tensor

$$\mathcal{P} \in \{0,1\}^{H \times H' \times I}$$
 $p_{hh'i} = 1 \text{ if } h = h'_i$
$$h'_i = (h'-1)S + i - P$$

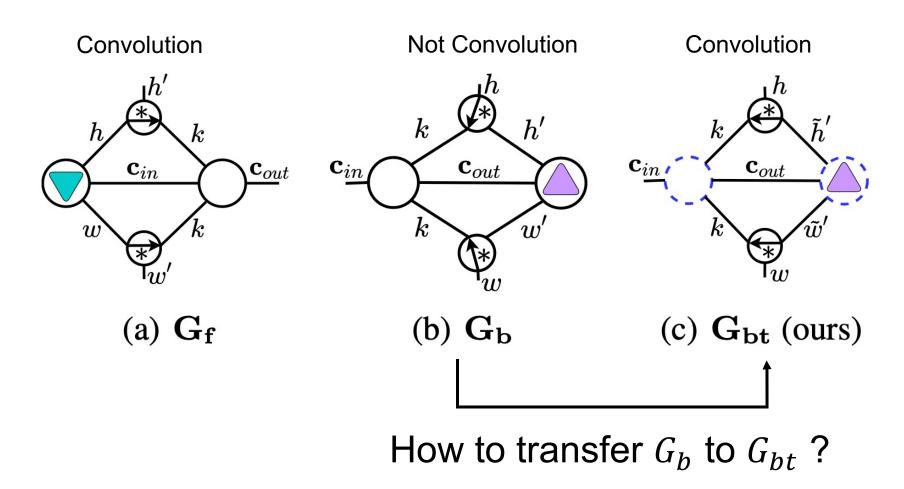
(1) Correcting Diagram


(2) Correcting Formulation

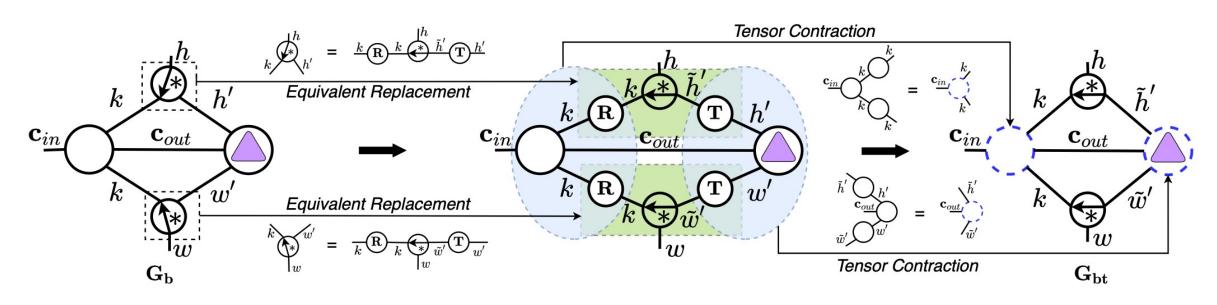
$$\mathcal{P}_{j,j',k} = 1 \text{ if } j = s\underline{j'} + k - p$$

Removing -1

Graph-in

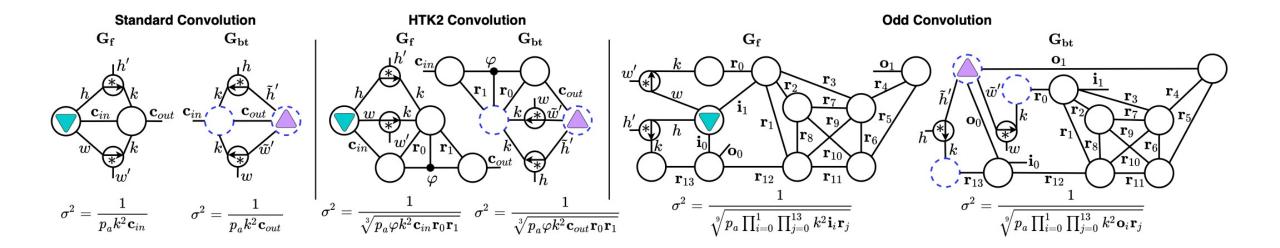

Step 1: Reformulate hyper-edge as summation of sub-structures

Unified Paradigm:
$$\prod_{k=0}^{n-1}\sigma^2(\boldsymbol{\mathcal{W}}^{(k)}) = \frac{1}{\boldsymbol{p_a}\varphi\prod_{i=0}^{n-1}\prod_{j=i+1}^{\tau-1}e_{ij}}$$


Maintaining data-flow variance in transition!

How to construct the fan-out mode?

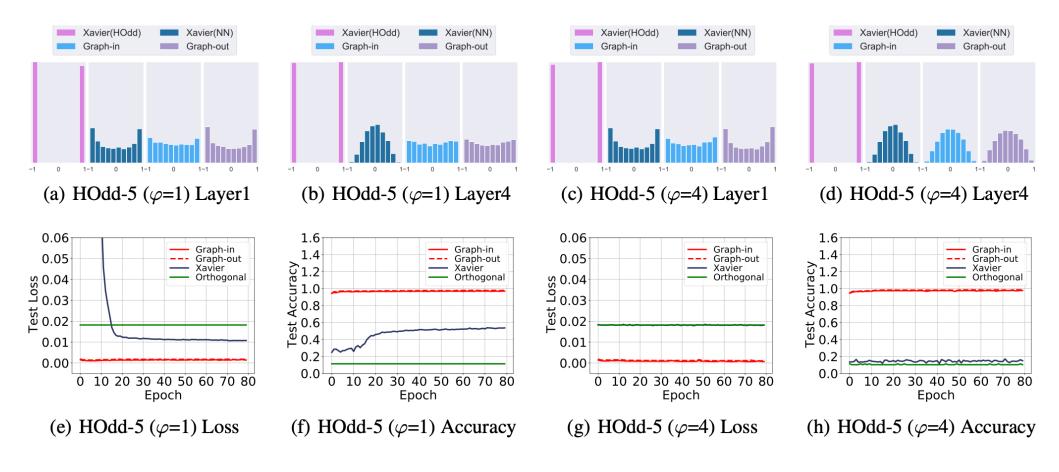
$$\left[\begin{array}{cccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right]$$


Reproducing Transformation

$$\left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

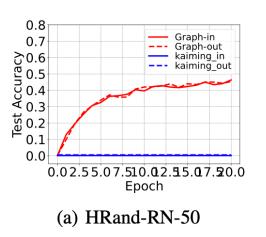
Reversal Matrix (R)

Transformation Matrix (T)

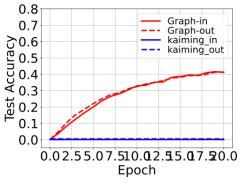


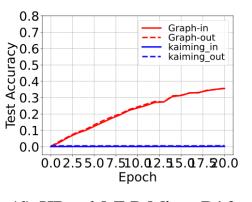
$$\prod_{k=0}^{n-1} \sigma^2(\mathbf{W}^{(k)}) = \frac{1}{\mathbf{p_a} \varphi \prod_{i=0}^{n-1} \prod_{j=i+1}^{\tau-1} e_{ij}}$$

Experiment result



On MNIST


Experiment result



-	C:f10			Time ImageNet			
		Cifar10			Tiny-ImageNet		
	Rank-Edge	Kaiming	Graph-in	Graph out	Kaiming	Croph in	Graph out
	Number	(-in/-out)	Grapii-iii	Graph-out	(-in/-out)	Graph-in	Graph-out
Low-Rank	1	0.1	0.8141	0.8163	0.307/0.2776	0.3153	0.3076
Tensor Ring	4	0.1	0.8308	0.8311	0.005	0.2494	0.249
$HTK2(\varphi=4)$	2	0.1	0.8638	0.8705	0.005	0.4014	0.4126
$HOdd(\varphi=4)$	14	0.1	0.8826	0.8806	0.005	0.5048	0.5045
Random-1	-	0.1	0.8538	0.8483	0.005	0.4965	0.5015
Random-2	-	0.1	0.8801	0.876	0.005	0.5379	0.5356
Random-3	-	0.1	0.8648	0.863	0.005	0.5475	0.5403
Random-4	_	0.1	0.8789	0.8816	0.005	0.5295	0.5306
Random-5	-	0.1	0.8622	0.8644	0.005	0.5444	0.5428

0.8 0.7 \$\frac{\text{Graph-in Graph-out kaiming_in kaiming_out}}{\text{Kaiming_out}} \text{VO.3} \te

(b) HRand-RN-101

(c) HRand-gMLP-S16

(d) HRand-MLP-Mixer-B16

On ImageNet

Thank you!