

Generalizing to New Physical Systems via Context-Informed Dynamics Model

July 17th-23rd, 2022

Matthieu Kirchmeyer*1,2, Yuan Yin*1,

Jérémie Donà¹, Nicolas Baskiotis¹, Alain Rakotomamonjy^{2,3}, Patrick Gallinari^{1,2}

* Equal Contribution, ¹Sorbonne Université - MLIA ISIR, ²Criteo AI Lab, ³Université de Rouen - LITIS

Modelling dynamical systems

Weather forecasting

Airplane design

Heart dynamics

Weather forecasting

Airplane design

Heart dynamics

Modelling dynamics from data with NNs

→ Strong + flexible alternative to *physical models*.

Modelling dynamical systems

Weather forecasting

Airplane design

Heart dynamics

Modelling dynamics from data with NNs

- → Strong + flexible alternative to *physical models*.
- → Successfully applied to various problems
 (Li et al., 2021; Sirignano and Spiliopoulos, 2018; de Bézenac et al., 2018).

Li et al., Fourier Neural Operator for Parametric Partial Differential Equations. ICLR, 2021
Sirignano and Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 2018
de Bézenac et al., Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge. ICLR, 2018

Generalization and dynamical systems

NNs and OOD generalization

→ NNs generalize poorly out-of-distribution.

Generalization and dynamical systems

- → NNs generalize poorly out-of-distribution.
- → Limitation for real-world dynamics models, e.g. when modelling:

- → NNs generalize poorly out-of-distribution.
- → Limitation for real-world dynamics models, e.g. when modelling:

Disease diffusion across countries

- NNs generalize poorly out-of-distribution.
- Limitation for real-world dynamics models, e.g. when modelling:

Disease diffusion across countries

Heart dynamics across patients

- NNs generalize poorly out-of-distribution.
- Limitation for real-world dynamics models, e.g. when modelling:

Disease diffusion across countries

Heart dynamics across patients

Sea surface temperature across spatial regions

- NNs generalize poorly out-of-distribution.
- Limitation for real-world dynamics models, e.g. when modelling:

Disease diffusion across countries

Heart dynamics across patients

Sea surface temperature across spatial regions

- → Context-Informed Dynamics Adaptation (CoDA)
 - one of the first principled solution to this open generalization problem.

Notation and objective

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

Notation and objective

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

 \rightarrow x(t): state value at t.

Notation and objective

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- \rightarrow x(t): state value at t.
- → *f*: *unknown* dynamics.

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- \rightarrow x(t): state value at t.
- \rightarrow f: unknown dynamics.
 - ⇒ defined by a *physical context*: system parameters, external forces...

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- \rightarrow x(t): state value at t.
- \rightarrow f: unknown dynamics.
 - ⇒ defined by a *physical context*: system parameters, external forces...

Goal: Learn dynamics across contexts with a *neural dynamics model* g_{θ} .

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- \rightarrow x(t): state value at t.
- \rightarrow f: unknown dynamics.
 - ⇒ defined by a *physical context*: system parameters, external forces...

Goal: Learn dynamics across contexts with a *neural dynamics model* g_{θ} .

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- \rightarrow x(t): state value at t.
- \rightarrow f: unknown dynamics.
 - ⇒ defined by a *physical context*: system parameters, external forces...

Goal: Learn dynamics across contexts with a *neural dynamics model* g_{θ} .

Multi-environment learning problem

 \rightarrow Environment e:

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- \rightarrow x(t): state value at t.
- \rightarrow f: unknown dynamics.
 - ⇒ defined by a *physical context*: system parameters, external forces...

Goal: Learn dynamics across contexts with a *neural dynamics model* g_{θ} .

- → Environment *e*:
 - physical context.

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- \rightarrow x(t): state value at t.
- \rightarrow f: unknown dynamics.
 - ⇒ defined by a *physical context*: system parameters, external forces...

Goal: Learn dynamics across contexts with a *neural dynamics model* g_{θ} .

- → Environment *e*:
 - physical context.
 - ightharpoonup several observed trajectories of f^e .

Notation and objective

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- \rightarrow x(t): state value at t.
- \rightarrow f: unknown dynamics.
 - ⇒ defined by a *physical context*: system parameters, external forces...

Goal: Learn dynamics across contexts with a *neural dynamics model* g_{θ} .

- → Environment *e*:
 - physical context.
 - ightharpoonup several observed trajectories of f^e .
- → **Training**: environments \mathcal{E}_{tr} with *reasonable data*.

Notation and objective

Physical systems driven by *unknown* differential equations:

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f(x(t))$$

- \rightarrow x(t): state value at t.
- \rightarrow f: unknown dynamics.
 - ⇒ defined by a *physical context*: system parameters, external forces...

Goal: Learn dynamics across contexts with a *neural dynamics model* g_{θ} .

- → Environment *e*:
 - physical context.
 - ightharpoonup several observed trajectories of f^e .
- → **Training**: environments \mathcal{E}_{tr} with *reasonable data*.
- ightharpoonup Adaptation: generalize to new environments \mathcal{E}_{ad} with few data.

CoDA learns

CoDA learns

 \rightarrow shared parameters across environments, θ^c .

CoDA learns

- \rightarrow shared parameters across environments, θ^c .
- \rightarrow environment-specific parameters, $\delta\theta^e$.

CoDA learns

- \rightarrow shared parameters across environments, θ^c .
- \rightarrow environment-specific parameters, $\delta\theta^e$.
- $\rightarrow \theta^e \triangleq \theta^c + \delta \theta^e$.

CoDA learns

- \rightarrow shared parameters across environments, θ^c .
- \rightarrow environment-specific parameters, $\delta\theta^e$.
- $\rightarrow \theta^e \triangleq \theta^c + \delta \theta^e$.

Under two constraints:

CoDA learns

- \rightarrow shared parameters across environments, θ^c .
- \rightarrow environment-specific parameters, $\delta\theta^e$.
- $\rightarrow \theta^e \triangleq \theta^c + \delta \theta^e$.

Under two constraints:

Locality.

CoDA learns

- \rightarrow shared parameters across environments, θ^c .
- \rightarrow environment-specific parameters, $\delta\theta^e$.
- $\rightarrow \theta^e \triangleq \theta^c + \delta \theta^e$.

Under two constraints:

Locality.

Fast adaptation to new systems.

CoDA learns

- \rightarrow shared parameters across environments, θ^c .
- \rightarrow environment-specific parameters, $\delta\theta^e$.
- $\rightarrow \theta^e \triangleq \theta^c + \delta \theta^e$.

Under two constraints:

Locality.

Fast adaptation to new systems.

Low-rank adaptation.

CoDA learns

- \rightarrow shared parameters across environments, θ^c .
- \Rightarrow environment-specific parameters, $\delta\theta^e$.
- $\rightarrow \theta^e \triangleq \theta^c + \delta \theta^e$.

Under two constraints:

Locality.

Fast adaptation to new systems.

Low-rank adaptation.

Low-dimensionality of the context.

Constrained optimization problem

$$\min_{\theta^c, \{\delta\theta^e\}_{e \in \mathcal{E}}} \sum_{e \in \mathcal{E}} \lVert \delta\theta^e \rVert^2 \quad \text{s.t.} \quad \forall x^e(t), \frac{\mathrm{d} x^e(t)}{\mathrm{d} t} = g_{\theta^c + \delta\theta^e}(x^e(t))$$

Constrained optimization problem

$$\min_{\theta^c, \{\delta\theta^e\}_{e \in \mathcal{E}}} \sum_{e \in \mathcal{E}} \lVert \delta\theta^e \rVert^2 \quad \text{s.t.} \quad \forall x^e(t), \frac{\mathrm{d} x^e(t)}{\mathrm{d} t} = g_{\theta^c + \delta\theta^e}(x^e(t))$$

→ Fast adaptation.

 θ^e generated via a linear **hypernetwork** $A_{\{W,\theta^e\}}$:

$$\theta^e \triangleq A_{\{W,\theta^c\}}(\xi^e) = \theta^c + W\xi^e$$

 θ^e generated via a linear **hypernetwork** $A_{\{W,\theta^c\}}$:

$$\theta^e \triangleq A_{\{W,\theta^c\}}(\xi^e) = \theta^c + W\xi^e$$

 $\rightarrow \xi^e$: context vector - low-dimensional, environment-specific

 θ^e generated via a linear **hypernetwork** $A_{\{W,\theta^c\}}$:

$$\theta^e \triangleq A_{\{W,\theta^c\}}(\xi^e) = \theta^c + W\xi^e$$

- $\rightarrow \xi^e$: context vector low-dimensional, environment-specific
- → Rows of *W*: shared adaptation directions

 θ^e generated via a linear **hypernetwork** $A_{\{W,\theta^c\}}$:

$$\theta^e \triangleq A_{\{W,\theta^c\}}(\xi^e) = \theta^c + W\xi^e$$

- $\rightarrow \xi^e$: context vector low-dimensional, environment-specific
- → Rows of *W*: shared adaptation directions
 - ightharpoonup Fixed low-dimensional adaptation subspace $\mathcal{W} \triangleq \operatorname{Span}(W_1, \cdots, W_{\dim(\xi)})$

 θ^e generated via a linear **hypernetwork** $A_{\{W,\theta^e\}}$:

$$\theta^e \triangleq A_{\{W,\theta^c\}}(\xi^e) = \theta^c + W\xi^e$$

- $\rightarrow \xi^e$: context vector low-dimensional, environment-specific
- → Rows of *W*: shared adaptation directions
 - ightharpoonup Fixed low-dimensional adaptation subspace $\mathcal{W} \triangleq \operatorname{Span}(W_1, \cdots, W_{\dim(\xi)})$

→ Adaptation is parameter efficient.

 θ^e generated via a linear **hypernetwork** $A_{\{W,\theta^e\}}$:

$$\theta^e \triangleq A_{\{W,\theta^c\}}(\xi^e) = \theta^c + W\xi^e$$

- $\rightarrow \xi^e$: context vector low-dimensional, environment-specific
- → Rows of *W*: *shared* adaptation directions
 - ightharpoonup Fixed low-dimensional adaptation subspace $\mathcal{W} \triangleq \operatorname{Span}(W_1, \cdots, W_{\dim(\xi)})$

- → Adaptation is parameter efficient.
- → Experimentally sample-efficient.

Figure 1: CoDA's projected loss landscape onto $\mathcal W$ for 3 Lotka-Volterra systems.

Figure 1: CoDA's projected loss landscape onto $\mathcal W$ for 3 *Lotka-Volterra* systems.

Low-rank

 \Rightarrow Adaptation subspace ${\mathcal W}$ contains optima (\rightarrow) with low loss.

Figure 1: CoDA's projected loss landscape onto $\mathcal W$ for 3 *Lotka-Volterra* systems.

Low-rank

riangle Adaptation subspace $\mathcal W$ contains optima (ightarrow) with low loss.

Locality

 \rightarrow Proximity of optima (\rightarrow) to θ^c (×).

→ Datasets: ODEs + PDEs with *unknown* parameters that vary across systems.

Table 1: MSE on new test trajectories (\downarrow). Best in **bold**; Second <u>underlined</u>.

- → Datasets: ODEs + PDEs with *unknown* parameters that vary across systems.
- → Dynamics-aware baselines based on meta-learning; multi-task learning.

Table 1: MSE on new test trajectories (\downarrow). Best in **bold**; Second <u>underlined</u>.

	Method	Lotka-Volterra $\times 10^{-5}$	$\textit{Gray-Scott} \times 10^{-3}$	Navier-Stokes $\times 10^{-4}$
	(MAML			
GBML <	ANIL Meta-SGD			
MTL	LEADS			
Context-	CAVIA-FiLM CAVIA-Concat			
ual	CoDA- ℓ_2			

- → Datasets: ODEs + PDEs with *unknown* parameters that vary across systems.
- → Dynamics-aware baselines based on meta-learning; multi-task learning.
- → Evaluation:
 - \rightarrow In-Domain (\mathcal{E}_{tr}).

Table 1: MSE on new test trajectories (\downarrow). Best in **bold**; Second <u>underlined</u>.

	Method	Lotka-Volterra $\times 10^{-5}$	$\textit{Glycolitic-Oscillator} \times 10^{-4}$	$\textit{Gray-Scott} \times 10^{-3}$	Navier-Stokes $ imes 10^{-4}$	
		In-domain	In-domain	In-domain	In-domain	
1	MAML	60.3±1.3	57.3±2.1	3.67±0.53	68.0±8.0	
GBML {	ANIL	381±76	74.5±11.5	5.01±0.80	61.7±4.3	
l	Meta-SGD	32.7±12.6	42.3±6.9	2.85±0.54	53.9±28.1	
MTL	LEADS	3.70±0.27	31.4±3.3	2.90±0.76	14.O±1.55	
i	CAVIA-FILM	4.38±1.15	4.44±1.46	2.81±1.15	23.2±12.1	
Context- ual	CAVIA-Concat	2.43±0.66	5.09±0.35	2.67±0.48	25.5±6.31	
	CoDA- ℓ_2	1.52±0.08	2.45±0.38	1.01±0.15	9.40±1.13	
	CoDA- ℓ_1	1.35±0.22	2.20±0.26	0.90±0.057	8.35±1.71	

- → Datasets: ODEs + PDEs with *unknown* parameters that vary across systems.
- → Dynamics-aware baselines based on meta-learning; multi-task learning.
- → Evaluation:
 - \rightarrow In-Domain (\mathcal{E}_{tr}).
 - \rightarrow 1-shot Adaptation ($\mathcal{E}_{\mathrm{ad}}$).

Table 1: MSE on new test trajectories (\downarrow). Best in **bold**; Second <u>underlined</u>.

	Method	Lotka-Volterra $ imes 10^{-5}$		Glycolitic-Oscillator $\times 10^{-4}$		$\textit{Gray-Scott} \times 10^{-3}$		Navier-Stokes $ imes 10^{-4}$	
		In-domain	Adaptation	In-domain	Adaptation	In-domain	Adaptation	In-domain	Adaptation
	MAML	60.3±1.3	3150±940	57.3±2.1	1081±62	3.67±0.53	2.25±0.39	68.0±8.0	51.1±4.0
GBML {	ANIL	381±76	4570±2390	74.5±11.5	1688±226	5.01±0.80	3.95±0.11	61.7±4.3	48.6±3.2
- (Meta-SGD	32.7±12.6	7220±4580	42.3±6.9	1573±413	2.85±0.54	2.68±0.20	53.9±28.1	44.3±27.1
MTL	LEADS	3.70±0.27	47.61±12.47	31.4±3.3	113.8±41.5	2.90±0.76	1.36±0.43	14.0±1.55	28.6±7.23
i	CAVIA-FILM	4.38±1.15	8.41±3.20	4.44±1.46	3.87±1.28	2.81±1.15	1.43±1.07	23.2±12.1	22.6±9.88
Context-	CAVIA-Concat	2.43±0.66	6.26±0.77	5.09±0.35	2.37±0.23	2.67±0.48	1.62±0.85	25.5±6.31	26.0±8.24
ual)	CoDA- ℓ_2	1.52±0.08	1.82±0.24	2.45±0.38	1.98±0.06	1.O1±O.15	0.77±0.10	9.40±1.13	10.3±1.48
Į	CoDA- ℓ_1	1.35±0.22	1.24±0.20	2.20±0.26	1.86±0.29	0.90±0.057	0.74±0.10	8.35±1.71	9.65±1.37

Conclusion

Take-home messages

→ New SoTA approach to handle OOD generalization in dynamical systems.

Conclusion

Take-home messages

- → New SoTA approach to handle OOD generalization in dynamical systems.
- → Fast, parameter-efficient and sample-efficient adaptation.

Take-home messages

- → New SoTA approach to handle OOD generalization in dynamical systems.
- → Fast, parameter-efficient and sample-efficient adaptation.

Paper arxiv.org/abs/2202.01889
Code github.com/yuan-yin/CoDA
Contact {matthieu.kirchmeyer,yuan.yin}@isir.upmc.fr

Take-home messages

- → New SoTA approach to handle OOD generalization in dynamical systems.
- → Fast, parameter-efficient and sample-efficient adaptation.

Paper arxiv.org/abs/2202.01889
Code github.com/yuan-yin/CoDA
Contact {matthieu.kirchmeyer,yuan.yin}@isir.upmc.fr

Check out our poster: Hall E #313 19/07 - 5:30 p.m. — 7:30 p.m !