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CountSketch [CCF ‘02] (Feature hashing [MD ‘89]):

• Dim reduction method using linear projections:

• Applications:

o Streaming (memory)

o Distributed Aggregation (communication)

o Compression (parameters)

CountSketch

𝒗 ∈ ℝ𝑛 → 𝑠𝑘𝑒𝑡𝑐ℎ(𝒗) ∈ ℝ𝑑 , 𝑑 ≪ 𝑛



HeavyHitters problem

Definition 𝒍𝟐-Heavy Hitters. 
For 𝒗 ∈ ℝ𝑛, and parameter 𝑘, the 𝑙2-heavy 
Hitters of 𝒗 are keys 𝑖 ∈ [𝑛] s.t.
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Heavy Hitters Problem (𝑙2):

Goal: Given 𝒗 ∈ ℝ𝑛, return a set of keys 𝐻 ⊂ [𝑛] of size 𝑂(𝑘) that 
includes all 𝑙2-heavy hitters of 𝒗.
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For 𝑙2-HeavyHitters:
• There are no deterministic sketches [KPW ‘21].
• The only known sketching algorithms are CountSketch (and 

variants)

Motivating questions

What can be said on their robustness to adaptive inputs?

(when input depend on previous outputs and randomness)
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• Adversarial input selection: assuming input controller tries to Fail the sketching 

algorithm.
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The Adaptive Inputs Setting

Using wrapping method ([HKMMS ‘20]): 
Can answer 𝒓 = 𝛀(ℓ𝟐) queries correctly (W.H.P). 

Where 𝑠𝑘𝑒𝑡𝑐ℎ size is O(ℓ × 𝑘𝟏.𝟓),  ℓ is a size-parameter, 𝑘 is the HeavyHitters parameter.
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Main Results

Question1. Is CountSketch already robust to adaptive inputs?

No. We show an attack on CountSketch with median estimator.

Question2. Can we do better (space-wise) then existing 
wrapper-robustification results?

Yes:

For Ω(ℓ2) queries, this construction has a space complexity of 

𝑂(ℓ × 𝑘). Improvement by a factor of 𝒌 upon previous results.

BCountSketch
Novel

Estimator
DP

Technique

Attack variants apply for variants of sketches and estimators.
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