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 Usage — Recovering heavy hitters of v.

Heavy hitters of v are “preserved” in sketch(v)
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CountSketch [CCF ‘02| (Feature hashing [IVID ‘85]):
 Dim reduction method using linear projections:

v € R* - sketch(v) € RY, d<n

* Applications:
o Streaming (memory)
o Distributed Aggregation (communication)
o Compression (parameters)




Definition l,-Heavy Hitters.

For v € R", and parameter k, the [,-heavy
Hitters of v are keys i € [n] s.t.
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Definition l,-Heavy Hitters.

For v € R", and parameter k, the [,-heavy
Hitters of v are keys i € [n] s.t.

1

2
vl = E |vtail”2

Where v,,;; is obtained from v by replacing the
k largest entries with O.

Heavy Hitters Problem ([, ):

keys magnitude: |v;|
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keys:

i € [n]

includes all [,-heavy hitters of v.

Goal: Given v € R", return a set of keys H c [n] of size O (k) that
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* Sketch matrix A is drawn from distribution p.
* For r rounds:

output a; « M(sketch(q;)) for query ;.
* Assumption: {7, }¢¢[] are fixed in advance

Performance:
Forr = 29 q, are correct (W.H.P).

Where ¢ X k is the size of sketch.
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Performance:
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* Sketch matrix A is drawn from distribution p.

output a; « M(sketch(q;)) for query ;.
* Assumption: {7, }¢¢[] are fixed in advance

Adaptive setting
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Sketch matrix A is drawn from distribution p.
For r rounds:
output a; « M(sketch(q;)) for query ;.
Assumption: ¢, may depend on {a;};<;—4

Performance:

Forr = 29 q, are correct (W.H.P).

Where ¢ X k is the size of sketch.

Performance:
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Why do we care about the adaptive setting?
* May appear naturally in systems with feedback
(see e.g. [SKIMS “159], [RPUISBGA 20]).
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Why do we care about the adaptive setting?
* May appear naturally in systems with feedback

(see e.g. [SKIMS “159], [RPUISBGA 20]).

* Adversarial input selection: assuming input controller tries to Fail the sketching

algorithm.
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Recent line of work has used wrapping methods over Oblivious sketching algorithms to
achieve robustness (see e.g. [BJWY 20|, [HKIMMS 201, [WZ ‘21], [ACSS ‘21], [BEO “21]).
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Using wrapping method ([HKMMS 20]):

Can answer 1 = Q(£%) queries correctly (W.H.P).
Where sketch size is O(£ x k1), £ is a size-parameter, k is the HeavyHitters parameter.
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