

UTILIZING EXPERT FEATURES FOR CONTRASTIVE LEARNING OF TIME-SERIES REPRESENTATIONS

ICML 2022

MANUEL NONNENMACHER, LUKAS OLDENBURG, INGO STEINWART, DAVID REEB

BOSCH CENTER FOR ARTIFICIAL INTELLIGENCE (BCAI), RENNINGEN, GERMANY

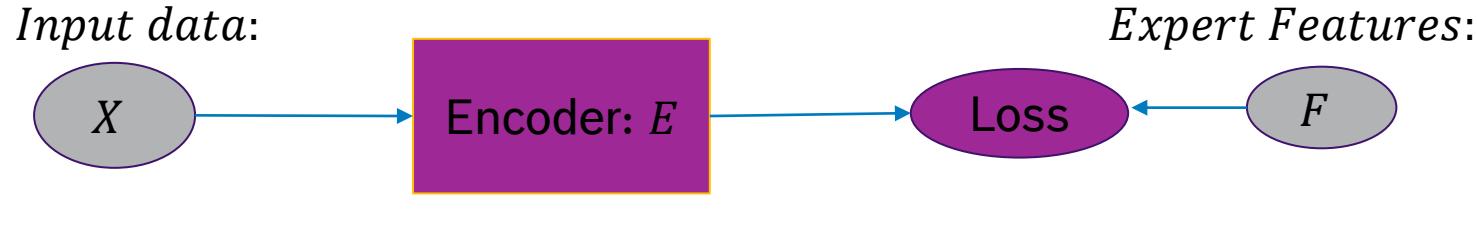
UNIVERSITY OF STUTTGART, GERMANY

Introduction and Setting

Problem:

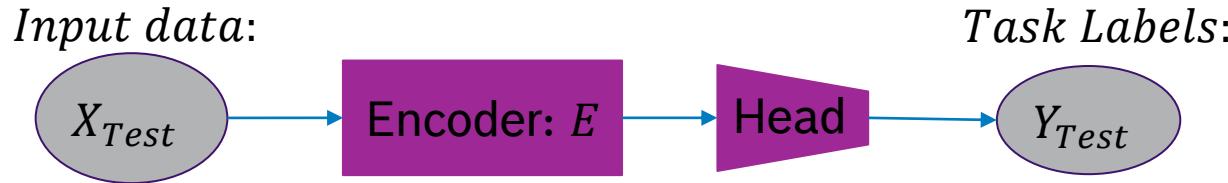
Utilize expert features to learn a representation, which can subsequently be used for a multitude of tasks (e.g., prediction, outlier detection, active learning, transfer learning,...)

Training:



$$\begin{aligned} X &\in \mathbb{R}^{N \times T \times c} \\ F &\in \mathbb{R}^{N \times f} \\ E(X) &\in \mathbb{R}^{N \times e} \end{aligned}$$

Testing:



$$\begin{aligned} X_{\text{Test}} &\in \mathbb{R}^{N_t \times T \times c} \\ Y_{\text{Test}} &\in \mathbb{R}^{N_t \times k} \end{aligned}$$

Examples:

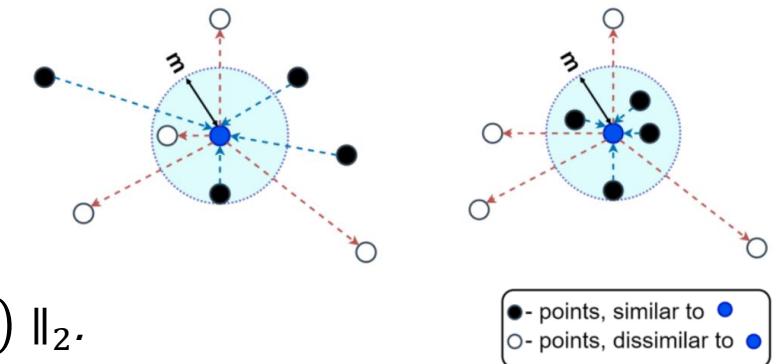
- **Input Time-Series:** Snippets with GPS location, Speed, Engine Temperature,
- **Expert Features:** Average Speed, Cumulative Elevation Gain, Simulated Data, Number of Peaks, Expert Labels,
- **Labels:** Emissions, Fuel Consumption, Quality Score, Outlier labels, ...

Introduction to Contrastive Learning of Representations

The Pair-Loss Function

- ▶ **Goal:** Contrastive learning tries to find a representation such that “similar” (same class) data points are close to each other, and “dissimilar” (different class) data points are well separated.
- ▶ **Pair-loss:** For two pairs (x_i, y_i) and (x_j, y_j) one can define the pair loss:

$$L_{pair}(x_i, x_j, s_{ij}) = s_{ij}D_{ij}^2 + (1 - s_{ij}) \max(0, m^2 - D_{ij}^2),$$



where $s_{ij} = \delta_{y_i, y_j}$ (“similarity”) and $D_{ij} = \| E(x_i) - E(x_j) \|_2$.

Contrastive Learning with Continuous Features

► **Our Idea:** Transferring the idea of contrastive learning to continuous labels/features leads to two desired properties:

- **(P1)** If $\|f_i - f_j\|_2$ is small, then $\|E(x_i) - E(x_j)\|_2$ should also be small.
- **(P2)** If $\|f_i - f_j\|_2$ is large, then $\|E(x_i) - E(x_j)\|_2$ should also be large.

► **Ansatz:** Extend the discrete similarity measure in natural way to (continuous) expert features:

$$s_{ij} = \delta_{y_i, y_j} \quad \xrightarrow{\hspace{1cm}} \quad s_{ij} = \left[1 - \frac{\|f_i - f_j\|_2}{\max_{k,l}(\|f_k - f_l\|_2)} \right]^2$$

► **Proposition:** Minimizing the resulting loss does encourage properties **(P1)** and **(P2)**.

But: The derivatives of this loss function are *not* continuous.

► **Solution:** A quadratic approximation with the same global minimum can alleviate this problem:

$$L_{quad} = \frac{1}{N^2} \sum_{i,j=1}^N ((1 - s_{ij})\Delta - D_{ij})^2$$

$$D_{ij} = \|E(x_i) - E(x_j)\|_2$$

$\Delta \in \mathbb{R}$ is a hyperparameter

Implicit Hard-Negative Mining

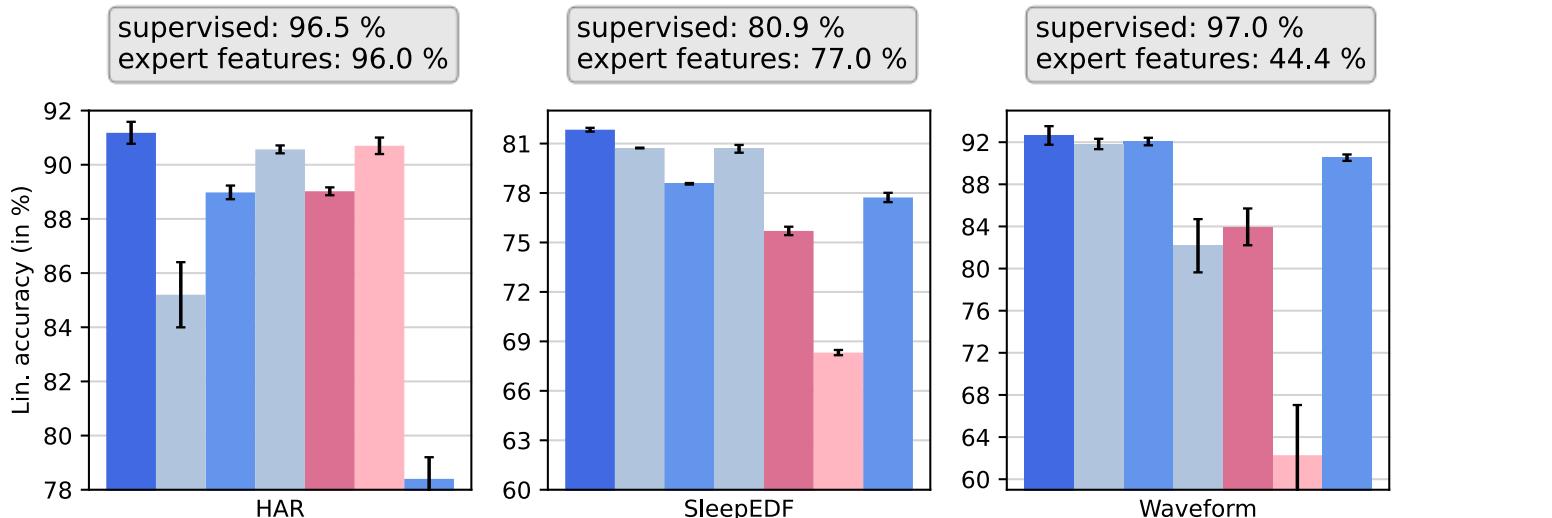
- ▶ Hard-negative mining (HNM):
 - ▶ **Explicit HNM:** Only train on pairs (i, j) with largest individual loss
 - ▶ **Implicit HNM:** Implicitly put more weight on those pairs (i, j) with larger individual loss
- ▶ Implicit HNM usually leads to superior performance and can be employed via a SoftMax-like loss function:

$$L_{ExpCLR}^\tau = \tau \log \left[\frac{1}{N^2} \sum_{i,j=1}^N \exp \left(\frac{((1-s_{ij})\Delta - D_{ij})^2}{\tau} \right) \right], \quad \tau \in \mathbb{R} \text{ is a hyperparameter (we choose } \tau = 1)$$

Results

Unsupervised Comparison

Unsupervised (U): Comparison of linear classification accuracies in the representation space, learned without any labels



Legend:

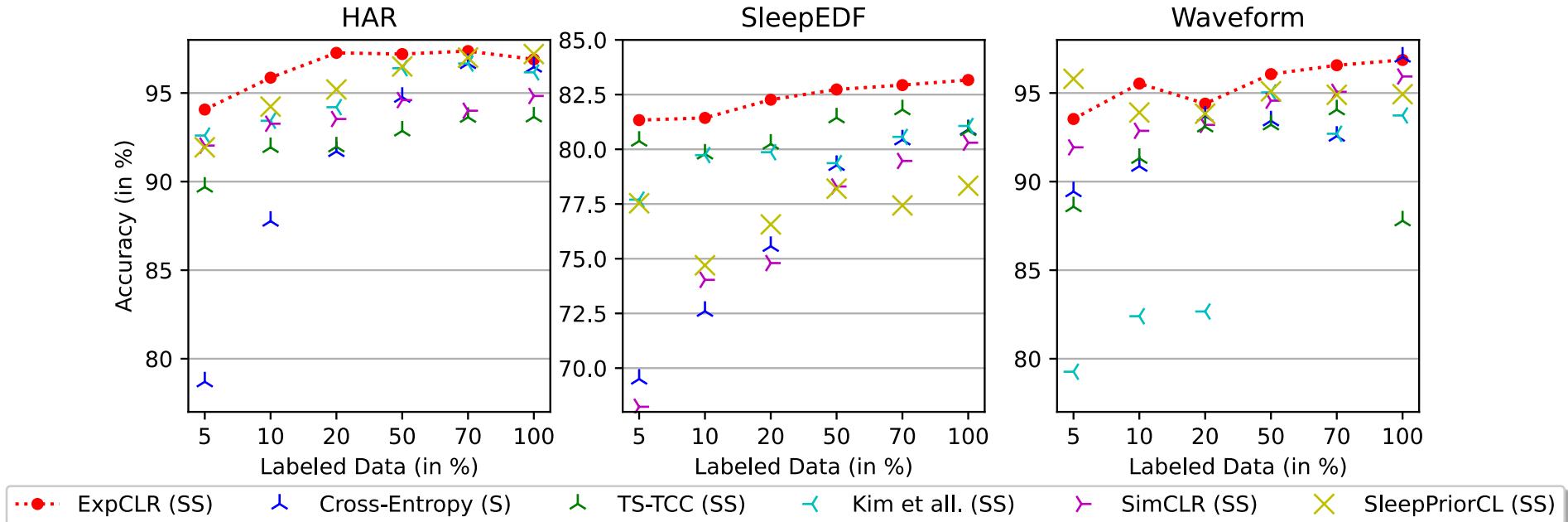
- ExpCLR (U)
- Kim et al. (U)
- TS-TCC (U)
- TREBA Contrastive Loss (U)
- Expert Feature Decoding (U)
- SimCLR (U)
- SleepPriorCL (U)

- We outperform all other methods
- Surpass supervised performance on SleepEDF

Results

Semi-Supervised Comparison

Semi-Supervised (SS): Comparison of linear classification accuracies on representation space, learned on a fraction of labeled data



- We outperform all other methods
- Competing methods have drastically varying performances
- Even with 5% of labeled data we outperform some state-of-the-art-methods