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Introduction and Setting

Problem:

Utilize expert features to learn a representation, which can subsequently be used for a
multitude of tasks (e.g., prediction, outlier detection, active learning, transfer learning,...)

Training: Input data: Expert Features:
@ ¢-<_® X € RNXTxc
Fe RV
E(X) € RN

Testing: Input data: Task Labels:
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Examples:

Input Time-Series: Snippets with GPS location, Speed, Engine Temperature, ....
Expert Features: Average Speed, Cumulative Elevation Gain, Simulated Data, Number of Peaks, Expert Labels, ....

Labels: Emissions, Fuel Consumption, Quality Score, Outlier labels, ...
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Introduction to Contrastive Learning of Representations
The Pair-Loss Function

» Goal: Contrastive learning tries to find a representation such that “similar’ (same class) data points
are close to each other, and “dissimilar’ (different class) data points are well separated.

> Pair-loss: For two pairs (x;,y;) and (x;, y;) one can define the pair loss:
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Contrastive Learning with Continuous Features

» Our Idea: Transferring the idea of contrastive learning to continuous labels/features leads to two desired
properties:
> (P1) If Il f; = fj ll; is small, then || E(x;) — E(x;) ll; should also be small.

> (P2) It Il fi — f; llp is large, then || E(x;) — E(x;) Il should also be large.

» Ansatz: Extend the discrete similarity measure in natural way to (continuous) expert features:
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» Proposition: Minimizing the resulting loss does encourage properties (P1) and (P2).
But: The derivatives of this loss function are not continuous.

» Solution: A quadratic approximation with the same global minimum can alleviate this problem:

Dy =l E(x;) — E(x) I,
A € R is a hyperparameter
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Implicit Hard-Negative Mining

» Hard-negative mining (HNM):
» Explicit HNM: Only train on pairs (i, ) with largest individual loss
» Implicit HNM: Implicitly put more weight on those pairs (i, j) with larger individual loss

» Implicit HNM usually leads to superior performance and can be employed via a SoftMax-like loss function:

T € R is a hyperparameter (we choose 7 = 1)
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Results
Unsupervised Comparison

Unsupervised (U): Comparison of linear classification accuracies in the representation space, learned without any labels

supervised: 96.5 %

supervised: 97.0 %
expert features: 96.0 %

expert features: 44.4 %

supervised: 80.9 %
expert features: 77.0 %
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e We outperform all other methods

e Surpass supervised performance on SleepEDF
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Results
Semi-Supervised Comparison

Semi-Supervised (SS): Comparison of linear classification accuracies on representation space, learned on a fraction of labeled data
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« We outperform all other methods
« Competing methods have drastically varying performances
« Even with 5% of labeled data we outperform some state-of-the-art-methods
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