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Initial Alignment (INAL)

Is a certain amount of “initial alignment” needed between a neural network
at initialization and a target function in order for (S)GD to learn?

For a target function f : X → Y, input distribution PX and a neural
network NNθ : X → Y randomly initialized with θ0 ∼ P0

INAL(f ,NN) := max
v∈neurons

Eθ0∼P0Ex∼PX [f (x) · NN
(v)
θ0 (x)]2,

Question: Does small INAL(f ,NN) imply that after T steps of GD,
|Ef (x) NN(T )(x)| is small (for a reasonable T )?
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Setting

Data:
Boolean target function: fn : {±1}n → {±1}
Uniform input distribution: PX = Unif ({±1}n)
Assume fn asymptotically balanced: PX (fn(X ) = 1) = 1/2 + on(1)

Architecture/algorithm:
Fully connected neural networks of poly(n) size with iid gaussian
initialization with rescaled variance and ReLU activation
Noisy GD with full batch and gradient precision A [Abbe and Sandon,’20,
Abbe et al.,’21]

θt = θt−1 − γtEx∼PX [∇θL(NNθt−1(x), f (x))]A + Z (t),

where Z (t) iid∼ N (0, Iσ2)
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Main Result

‘Extended’ function: f̄n(x1, ..., xn, xn+1, ..., xn2) = fn(x1, ..., xn)

Theorem 1

If INAL(fn,NNn) = O(n−c), for c ≥ 1, then the noisy GD algorithm after
T steps of training on any fully connected network of size E and any iid
initialization, outputs a network NN

(T )
n such that

|E[f̄n(x) · NN(T )
n (x)]| = O

(
γT

√
EA

σ
· n−

c−1
8

)

INAL characterizes if fn is weakly learnable on Gaussian ReLU
networks
Hardness for any iid initialization, activation
We obtain hardness only for the ‘extension’ of fn
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Proof Outline
Fourier-Walsh transform of f :

fn(x) =
∑
S∈[n]

f̂n(S)χS(x), χS(x) :=
∏
i∈S

xi , f̂n(S) := Ex [fn(x)χS(x)]

Step 1: If INAL(fn,NNn) is small, fn is high-degree.

Specifically: W≤k [fn]︸ ︷︷ ︸∑
S :|S|≤k f̂n(S)

2

≤ O
(
nk+1) · INAL(fn,NNn), for any k .

Step 2: High-degree functions are hard to learn for noisy GD on fully
connected neural networks.

Thank you.
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