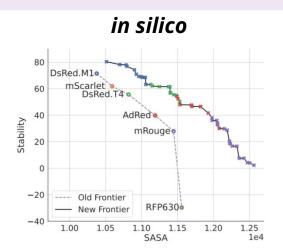




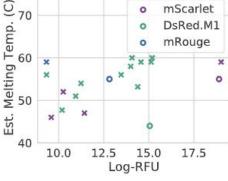
### **Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders**

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside, Andrew Gordon Wilson



### mScarlet DsRed.M1 mRouge

in vitro





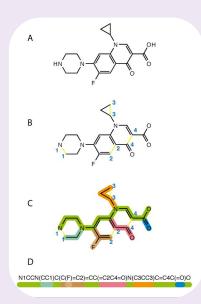




# **Biological Sequence Design**

intractable combinatorial optimization problem slow/impossible to compute  $\max_{\mathbf{x} \in \mathcal{X}} (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$ 

- Discrete, high-dim. inputs
- Multiple black-box objectives
- Batched experiments
- Noisy labels





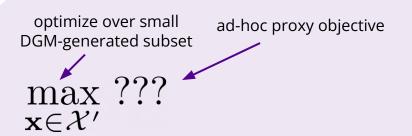
| 10         | 20         | 30                 | 40         | 50         |
|------------|------------|--------------------|------------|------------|
| MVSKGEELFT | GVVPILVELD | ${\tt GDVNGHKFSV}$ | SGEGEGDATY | GKLTLKFICT |
| 60         | 70         | 80                 | 90         | 100        |
| TGKLPVPWPT | LVTTLTYGVQ | ${\tt CFSRYPDHMK}$ | QHDFFKSAMP | EGYVQERTIF |
| 110        | 120        | 130                | 140        | 150        |
| FKDDGNYKTR | AEVKFEGDTL | VNRIELKGID         | FKEDGNILGH | KLEYNYNSHN |
| 160        | 170        | 180                | 190        | 200        |
| VYIMADKQKN | GIKVNFKIRH | NIEDGSVQLA         | DHYQQNTPIG | DGPVLLPDNH |
| 210        | 220        | 230                |            |            |
| YLSTQSALSK | DPNEKRDHMV | LLEFVTAAGI         | TLGMDELYK  |            |







### **Deep Generative Models (DGMs)**



- Scaled Dot-product Attention

  MatMult

  Scale Dot-Product Attention

  Layer

  Add & Norm

  Feed Forward

  Attention

  Multi-Head Attention

  Nx

  Add & Norm

  Multi-Head Attention

  Positional Encoding

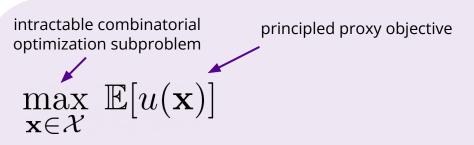
  Inputs
- How do we rank generated sequences, accounting for multiple objectives, explore-exploit, etc.?
- How do we generate good subsets for ranking?



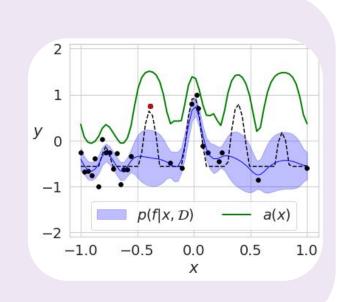




# **Bayesian Optimization (BayesOpt)**



- Strategy 1: solve subproblem with genetic algorithms (inefficient).
- Strategy 2: use a frozen pretrained generative model, solve in latent space (data-hungry).









### **Latent Multi-Objective BayesOpt (LaMBO)**

LaMBO is designed from the ground up to combine the best attributes of DGMs and BayesOpt.

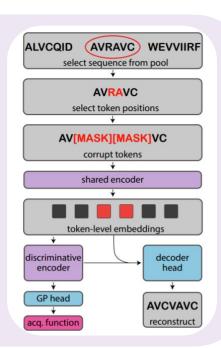






#### The LaMBO architecture

- Jointly train a denoising autoencoder and a discriminative deep kernel GP.
- Rank samples with the NEHVI acquisition function, optimize in latent space.
- Pretraining is optional!



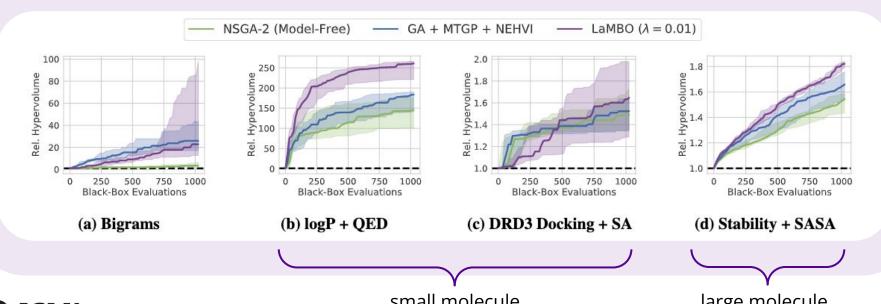






# **Previewing the results**

Comparing **LaMBO** to model-free and model-based genetic algorithms





small molecule

large molecule

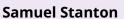




### **Collaborators**









**Wesley Maddox** 



**Nate Gruver** 



**Andrew Wilson** 





**Phil Maffetone** 



**Emily Delaney** 



**Peyton Greenside** 







# Thanks, come check out the poster!

Thursday, July 21, 6PM - 8PM Poster Session 1, Hall E #533



@samuel\_stanton\_



ss13641@nyu.edu







#### Code





