

PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs

Zhengyang Shen, Tao Hong, Qi She, Jinwen Ma, Zhouchen Lin

Peking University

Introduction

- An extension work of our previous two works: PDO-eConvs¹ and PDO-eS2CNNs².
- As far as we know, PDO-s3DCNNs are the most general and flexible steerable 3D CNNs.

¹Shen et al. PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions. ICML, 2020.

²Shen et al. PDO-eS2CNNs: Partial Differential Operator Based Equivariant Spherical CNNs. AAAI, 2021.

Steerable CNNs

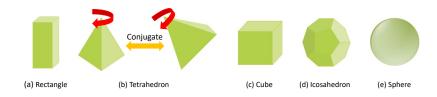
For a 3D steerable CNN Ψ , it should satisfy that:

$$\forall g \in \mathcal{G}, \quad \pi'(g) \left[\Psi \left[f \right] \right] = \Psi \left[\pi(g) \left[f \right] \right],$$

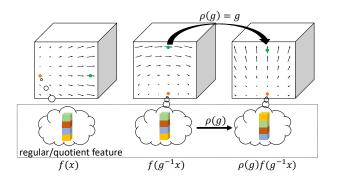
where

$$[\pi(g)f](x) = \rho(g)f(g^{-1}x),$$

As a result, the most general steerable CNNs should address arbitrary rotation group $\mathcal G$ and their feature field determined by $\rho(g)$.



Common 3D rotation groups contain the continuous group SO(3) and its discrete subgroups, including the dihedral group D_N , the tetrahedral group \mathcal{T} , the cubic group \mathcal{C} and the icosahedral group \mathcal{I} .



Common feature fields include regular features, quotient features and irreducible features.

Table: The comparison between PDO-s3DCNNs and other 3D steerable models.

	${\cal G}$			Feature field				
	$\mathcal{G} \leq \mathcal{O}$	\mathcal{I}	<i>SO</i> (3)	Regular	Quotient	Irreducible	Data type	
N-Body			√			√	graphs	
TFN			✓			✓	point clouds	
CubeNets	✓			✓			voxels	
SE3CNNs			✓			✓	voxels	
SE(3)-Transformer			✓			✓	point clouds/graphs	
PDO-s3DCNN	√	√	√	√	√	√	voxels	

PDO-s3DCNNs can accommodate all common subgroups of SO(3) and feature fields, while others can only address specific groups and feature fields.

Main theoretical results

We employ a combination of PDOs to define a 3D filter on the input function $f \in C^{\infty}(\mathbb{R}^3, \mathbb{R}^K)$:

$$\Psi[f] = \left(A_0 + A_1 \partial_{x_1} + A_2 \partial_{x_2} + A_3 \partial_{x_3} + A_{11} \partial_{x_1^2} + A_{12} \partial_{x_1 x_2} + A_{13} \partial_{x_1 x_3} + A_{22} \partial_{x_2^2} + A_{23} \partial_{x_2 x_3} + A_{33} \partial_{x_3^2}\right) [f].$$

 Ψ is equivariant over \mathcal{G} , if and only if its coefficients satisfy the following linear constraints: $\forall g \in \mathcal{G}$,

$$\begin{cases} r\rho'(g)B_0 = B_0\rho(g), \\ \rho'(g)B_1 = B_1\left(g\otimes\rho(g)\right), \\ \rho'(g)B_2 = B_2\left(P\left(g\otimes g\right)P^{\dagger}\otimes\rho(g)\right), \end{cases}$$

- The linear constraints can be solved efficiently using SVD.
- For discrete groups, we should only solve the constraints for group generators.
- For continuous group *SO*(3), we should only solve the constraints for approximate group generators.

Experimental results

Rotated Tetris:

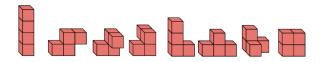


Table: The test accuracy of the \mathcal{O} - and SO(3)- steerable CNNs discretized by FD on 3D Tetris with cubic rotations.

Group	Feature field	Test acc. (%)	# Params	Time
O	Regular	100.0 ± 0.0	31k	14.3s
$\mathcal O$	${\mathcal V}$ -quotient	100.0 ± 0.0	5.5k	2.3s
$\mathcal O$	\mathcal{T} -quotient	100.0 ± 0.0	2.2k	1.3s
<i>SO</i> (3)	Irreducible	100.0 ± 0.0	22.8k	66.7s

SHREC'17 Retrieval:

Table: The retrieval performance of V-, T-, O-, T- and SO(3)-steerable CNNs, tested on SHREC'17.

Group	Discretization	Feature field	Score
\overline{v}	FD	Regular	52.7
${\mathcal T}$	FD	Regular	57.6
\mathcal{O}	FD	Regular	58.6
${\cal I}$	Gaussian	Regular	55.5
<i>SO</i> (3)	FD	Irreducible	57.4
<i>SO</i> (3)	Gaussian	Irreducible	58.3

Table: The comparison with other equivariant methods on SHREC' 17.

			micro			macro			
Methods	Score	P@N	R@N	mAP	P@N	R@N	mAP	Param	Input
RI-GCN	56.2	69.1	68.0	64.5	47.4	57.0	47.8	4.4M	point clouds
Li et al.	56.5	69.4	69.4	65.8	48.1	56.0	47.2	2.9M	point clouds
S2CNN	-	70.1	71.1	67.6	-	-	-	1.4M	spherical
FFS2CNN	-	70.7	72.2	68.3	-	-	-	-	spherical
VolterraNet	-	71.0	70.0	67.0	-	-	-	0.4M	spherical
Esteves et al.	56.5	71.7	73.7	68.5	45.0	55.0	44.4	0.5M	spherical
Cobb et al.	-	71.9	71.0	67.9	-	-	-	0.25M	spherical
SE3CNN	55.5	70.4	70.6	66.1	49.0	54.9	44.9	0.14M	spherical
Ours (SO(3))	58.3	73.1	73.4	69.3	52.5	55.4	47.3	0.15M	spherical
Ours (C, regular)	58.6	72.9	73.0	68.8	51.9	57.7	48.3	0.15M	spherical
Ours (C, V-quotient)	55.5	69.2	69.6	65.0	48.0	56.3	46.0	0.15M	spherical
Ours $(C, mixed)$	59.1	73.2	73.3	69.3	51.7	57.8	48.8	0.15M	spherical

ISBI 2012 segmentation

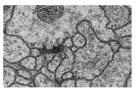


Table: ISBI 2012 segmentation results.

	V_{rand}	V_{info}
U-Net	0.97276	0.98662
FusionNet	0.97804	0.98995
CubeNet	0.98018	0.98202
SFCNN	0.98680	0.99144
PDO-s3DCNN (V -steerable)	0.98415	0.99031
PDO-s3DCNN (\mathcal{C} -steerable)	0.98727	0.99089

Thank you for your time!