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We extend AutoML to best make such choices. Our
domain-independent, meta-learning approach learns a

zero-shot model that allows to select the right DL pipeline
given only trivial meta-features of D
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Approach

 We leverage a cost matrix
to learn a joint response
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Approach

e Zero-shot AutoML with Pretrained Models with

Algorithm Selection (ZAP-AS)

— learn a selector between DL pipelines with AutoFolio
— vyields already very good performance!
— Drawback: AS abstracts away our DL pipelines as uncorrelated

e Zero-shot AutoML with Pretrained Models with

Hyperperameter Optimization (ZAP-HPO)

— interprets the space of DL pipelines as search space for HPO
— train an NN-based selector with a pairwise ranking (of
configurations) objective



Meta-Dataset

* Meta-Dataset:
— set of datasets with meta-features
— aset of DL pipelines
— test costs for the pipelines on the datasets
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* Datasets:
— 35 core datasets from TensorFlow Datasets
— Diversity: small, large, colored, b/w, various image resolutions &
domains
— augmented each core dataset 15 times
— 525 datasets in total
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DL Pipeline Design Space & Optimization

based on the winning approach of the AutoCV competition
built a highly parameterized space of DL pipelines around
this with 26 hyperparameters

Applied HPO to optimize for the Area under the Learning
Curve (ALC) score introduced in the AutoDL challenge
Result: one optimized DL pipeline per dataset

To arrive at the described meta-dataset, we evaluated
each 525 pipelines across all 525 datasets

— Meta-Dataset with 275 625 cost entries
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Results: Own benchmark
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Results: AutoDL Benchmark

Solution Rank (ALC)

DeepWisdom 2.46 £0.13
DeepBlueAl 2.76 £ 0.08
PASANJU  2.62+£0.11
ZAP-HPO 2.16 = 0.15
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Thank youl!

* Please do check out our paper for more details or stop
by our (physical) poster at ICML!

10



