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Involves the search of maxima/minima
over an objective function with a (large)
discrete domain;

The number of possible solutions N\ Tt
‘explode’ as the size of the problem g ~;; \m oL
increases — typically Combinatorial ’ N %ia";;g;;fe;:n B
Optimisation problems are NP-hard; CRCE
Most problems are naturally expressed

over graphs;

Examples of problems: Influence
Maximisation, Max-Cut, Vertex Covering

Photo Credit: https://threatpost.com/researchers-graph-social-networks-spot-spammers-061711/75346/
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 We make the observation that, for budget constrained problems, subgraphs of the
original problem contain all the information needed to find a solution;

* Using this, we propose to learn to find an optimal subgraph, and then use an existing
heuristic to find the solution in a much more efficient manner;

* To find an optimal subgraph, we learn to navigate subgraph embeddings;

* Problem Formulation: Given a graph G = (V, E), objective function f(-), heuristic H (+)
and optimal solution X*, we want to find a subgraph S = (Vs, E5) where V; c V,E5 C

E, such that |Vg| < |V| and f(H(S))/f(X*) = 1.
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* To learn a discriminative subgraph embedding, we first generate a dataset of subgraphs;

* We take a small training graph Gy € G where we can readily obtain solutions and
sample N subgraphs, ranking each using the quality of the solution returned by the
heuristic;

* An encoder is then trained by minimising the InfoNCE loss [1] — we perform an ablation
justifying the choice of this loss compared to a standard classification loss and an ordinal
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* Once the encoder is trained, we then learn how to navigate the embedding space;

* We formulate this as a sequential decision making problem and apply the standard Markov
Decision Process framework;

* Starting from a random subgraph, an agent must learn to take subgraph modification operations
(actions) that change subgraph, eventually leading to an optimal subgraph;

 The agent is rewarded for getting closer to the region of high scoring subgraphs in the pre-trained

embeddlng Space, Class 1 Class 2 Class 3 Class 4 — Agent
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* We found that LeNSE is capable of efficiently pruning the graph without
any significant degradation in performance;

e Compared to the competing methods, LeNSE was able to prune
significant amounts of the graph whilst also maintaining close to optimal
performance;

* |n some instances LeNSE was able to prune more than 90% of the nodes
and edges;

B Speed-up using LeNSE ™ Heuristic ® LeNSE ™ Nodes MW Edges
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 We have introduced a framework that is able to scale up existing CO
solvers by efficiently pruning the problem through subgraph navigation;

 When tested on several real world graphs we found that we can, in the
best case, prune more than 90% of the graph without a significant
performance degradation;

* Further, we also demonstrate that on a large, real world graph the speed
up of using the LeNSE framework provides a 140x speed-up over using
the heuristic without LeNSE;

* Future directions include looking to generalise this framework to non-

budget constrained problems, where the size of the solution is not
known a-priori.
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