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Offline RL Policies Should be 
Trained to be Adaptive



Learning to make decisions from large datasets 
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State-based policies are not enough. 
We need adaptation!
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Why is adaptation necessary? How should we train to adapt?



Why is adaptation necessary in 
Offline RL?
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Stable but always slow
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During evaluation, agent changes its uncertainty about environment
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Agent cannot fully determine true 
environment from training contexts

True MDP Many MDPs are 
consistent with offline dataset

Algorithm

Posterior distribution over 
MDPs P(M |𝒟)

Offline 
Dataset

Offline RL in a Bayesian Perspective
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To be (Bayes)-optimal in offline RL…

max
π

JBayes(π) = 𝔼M∼P(M|D)[JM(π)]

Average over feasible MDPs 
 given offline dataset

Return of policy in MDP

This turns out to be a POMDP objective! [Duff et al, 2002]

Maximize return on average from MDPs from the posterior distribution



Theorem (informal):  The Bayes-optimal offline RL policy is memory-based.

Intuition: Test-time return objective is a POMDP, so optimal policy is adaptive



How can we learn to adapt in 
Offline RL?



Approach

max
π

JBayes(π) = 𝔼M∼P(M|D)[JM(π)]

Average over likely MDPs 
 given offline dataset

Return of policy in MDP

Follow the policy gradient of the Bayesian offline RL objective



• The policy needs to be adaptive to changes in uncertainty 

• Value functions must understand how uncertainty can change 

• The policy should learn to focus on value functions 
 consistent with the current trajectory 
 

The Important Components



Choosing the right policy class

State-based policies  are suboptimal in offline RL because they don’t 
understand how agent’s uncertainty has changed during an episode.
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State-based Policies ➡ Uncertainty-Adaptive Policies

Definition: The relative MDP weighting  measures which MDP in the 
posterior distribution is most likely to have produced the history  

                                  

b(h)
h

b(h)(M) ∝ exp( −
T

∑
i=1

Surprise(M, (st, at, rt, st+1))

π(a |s, b(h))



• The policy needs to be adaptive to changes in uncertainty 

• Value functions must understand how uncertainty can change 

• The policy should learn to focus on value functions 
 consistent with the current trajectory 
 

An Abridged Algorithm
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]max
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𝔼a∼π(⋅|s,b)[ Qπ
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Interpretation: Take actions with high value averaged across MDPs 
in the posterior that are consistent with the trajectory seen so far  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Experiments



D4RL Offline RL Benchmark



Adaptation Excels in Diverse Environments



Summary

 
Offline RL policies need the ability to adapt, and to be taught how to adapt


