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Offline RL Policies Should be
Trained to be

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, Sergey Levine
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Learning to make decisions from large datasets
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Conservatism: Do the thing you know best



Conservatism: Do the thing you know best

s this optimal?

max ConservativeReturn(x)
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s this optimal?

max ConservativeReturn(x)
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State-based policies are not enough.
We need adaptation!
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Offline RL agents should be adaptive under uncertainty
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Offline RL agents should be adaptive under uncertainty

Objectives that
oromote adaptation
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Offline RL agents should be adaptive under uncertainty

Objectives that
oromote adaptation

AdaptiveReturn
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Why is adaptation necessary? How should we train to adapt?



Why Is adaptation necessary In
Offline RL?
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Risky (but fast if succeeds)
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Conservative solution

Risky (but fast if succeeds) Stable but always slow
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During evaluation, agent changes Its uncertainty about environment



The agent’s epistemic uncertainty is not static

During evaluation, transitions provided by
environment changes the agent's uncertainty



The agent’s epistemic uncertainty is not static

During evaluation, transitions provided by
environment changes the agent's uncertainty
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The policy can increase performance by changing



Offline RL in a Bayesian Perspective
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Offline RL in a Bayesian Perspective
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Offline RL in a Bayesian Perspective

Agent cannot fully determine true
environment from training contexts
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Offline RL in a Bayesian Perspective

Agent cannot fully determine true Posterior distribution over
environment from training contexts MDPs P( M‘ @)
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Offline Algorithm Many MDPs are

True MDP Dataset consistent with offline dataset



To be (Bayes)-optimal in offline RL...

Maximize return on average from MDPs from the posterior distribution



To be (Bayes)-optimal in offline RL...

Maximize return on average from MDPs from the posterior distribution

maX ]Bayes(ﬂ) — MNP(M\D) [JM(ﬂ)]

\

Average over feasible MDPs Return of policy in MDP
given offline dataset




To be (Bayes)-optimal in offline RL...

Maximize return on average from MDPs from the posterior distribution

maX ]Bayes(ﬂ) — MNP(M\D) [JM(ﬂ)]

\

Average over feasible MDPs Return of policy in MDP
given offline dataset

This turns out to be a POMDP objective! [pu et al, 2002




Theorem (informal): The Bayes-optimal offline RL policy is memory-based.

Intuition: Test-time return objective is a POMDP, so optimal policy is adaptive

Proposition A.1 (Sub-optimality of Markovian policies and optimality of adaptiveness). Let n € N. There are offline RL
problem instances (D, p(M)) with n-state MDPs where the adaptive Bayes-optimal policy achieves Jpayes(T yyupiive) =

A . . . . . . 1.9
—2n but the highest performing Markovian policy achieves return of a magnitude worse: Jpayes(Tior) < —5N°-



How can we learn to adapt In
Offline RL?



Approach

max Jp,,0(7) = Epropinpyl (7))
Average over likely MDPs Return of policy in MDP
given offline dataset

Follow the policy gradient of the Bayesian offline RL objective



The Important Components

* The policy needs to be adaptive to changes in uncertainty

* Value functions must understand how uncertainty can change

* The policy should learn to focus on value functions
consistent with the current trajectory



Choosing the right policy class

State-based policies zy(a | s) are suboptimal in offline RL because they don’t
understand how agent’s uncertainty has changed during an episode.

Definition: The relative MDP weighting b(/1) measures which MDP in the
posterior distribution is most likely to have produced the history &

T
b(h)(M) x exp( — 2 Surprise(M, (s,, a,, 1,, 5,,1))
i=1
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State-based Policies = Uncertainty-Adaptive Policies
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Definition: The relative MDP weighting b(/1) measures which MDP in the
posterior distribution is most likely to have produced the history &
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An Abridged Algorithm

 The policy needs to be adaptive to changes in uncertainty
* Value functions must understand how uncertainty can change

 The policy should learn to focus on value functions
consistent with the current trajectory



Learning value functions
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Learning value functions
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The Important Components

 The policy needs to be adaptive to changes in uncertainty
* Value functions must understand how uncertainty can change

 The policy should learn to focus on value functions
consistent with the current trajectory
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The dataset induces a distribution over MDPs P(M | )
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The dataset induces a distribution over MDPs P(M | )
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Furthermore, this distribution has changed within the episode (relative MDP weighting)
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Furthermore, this distribution has changed within the episode (relative MDP weighting)
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Interpretation: Take actions with high value averaged across MDPs
IN the posterior that are consistent with the trajectory seen so far



The Important Components

 The policy needs to be adaptive to changes in uncertainty
* Value functions must understand how uncertainty can change

 The policy should learn to focus on value functions
consistent with the current trajectory



APE-V (Adaptive Policies with Ensembles of Value Functions)
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NIEGY \Y

Ensemble of Value Functions {Q{T | Qg . Q7]

Trained to represent posterior over value functions P(Qy, | )

Uncertainty-Adaptive Policy
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Experiments



D4RL Offline RL Benchmark

CQL IQL SAC-N
Ansk Name (Kumar et al., 2020)  (Kostrikov et al., 2021b)  (An et al., 2021) it
halfcheetah-random 354 31.3+£3.5 29.8+1.6 29.9+1.1
halfcheetah-medium 44 4 47.44+0.2 67.5+£1.2 69.1 £ 04
halfcheetah-medium-expert 62.4 95.0+1.4 102.7+1.5 1014+ 14
halfcheetah-medium-replay 46.2 44.2+1.2 63.9+0.8 64.6 + 0.9
hopper-random 10.8 5.3+0.6 31.3+0.0 31.3+0.2x
hopper-medium-expert 111.0 96.9+15.1 110.1+£0.3 105.72 £ 3.7
hopper-medium-replay 48.6 94.7+8.6 101.840.5 98.5+ 0.5
walker2d-random 7.0 544+1.7 16.3+9.4 15.5+8.5
walker2d-medium 74.5 78.3+8.7 87.9+0.2 90.3 + 1.6
walker2d-medium-expert 98.7 109.1£0.2 116.0+6.3 1100+ 1.5
walker2d-medium-replay 32.6 73.8+7.1 78.7+0.7 82.9+ 04
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Adaptation Excels in Diverse Environments
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Summary

Offline RL policies need the ability to adapt, and to be taught how to adapt




