

Offline RL Policies Should be Trained to be Adaptive

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, Sergey Levine

Learning to make decisions from large datasets

Learn a policy π from dataset $\mathscr D$ that maximizes

Return (\oplus) , π)

Learn a policy π from dataset $\mathscr D$ that maximizes

Return(\oplus , π)

Conservatism: Do the thing you know best

Conservatism: Do the thing you know best

Is this optimal?

max ConservativeReturn(π) $\pi(a|s)$

Conservatism: Do the thing you know best

Is this optimal?

max ConservativeReturn(π) $\pi(a|s)$

State-based policies are not enough. We need adaptation!

max ConservativeReturn(π) $\pi(a|s)$

max ConservativeReturn(π) $\pi(a|s)$

```
\max_{\pi(a|s)} ConservativeReturn(\pi)
\pi(a|h)
Policies that have memory
```

Objectives that promote adaptation

AdaptiveReturn $\max_{\pi(a|s)} \text{ConservativeReturn}(\pi)$ $\pi(a|s)$ $\pi(a|h)$ Policies that have

memory

Objectives that promote adaptation

AdaptiveReturn

max ConservativeReturn (π)

 $\pi(a|S)$

 $\pi(a \mid h)$

Policies that have memory

Why is adaptation necessary?

How should we train to adapt?

Why is adaptation necessary in Offline RL?

Non-conservative solution

Risky (but fast if succeeds)

Non-conservative solution

Conservative solution

Risky (but fast if succeeds)

Stable but always slow

During evaluation, agent changes its uncertainty about environment

The agent's epistemic uncertainty is not static

During evaluation, transitions provided by environment *changes the agent's uncertainty*

The agent's epistemic uncertainty is not static

During evaluation, transitions provided by environment *changes the agent's uncertainty*

The policy can increase performance by changing

True MDP

Agent cannot fully determine true environment from training contexts

To be (Bayes)-optimal in offline RL...

Maximize return on average from MDPs from the posterior distribution

To be (Bayes)-optimal in offline RL...

Maximize return on average from MDPs from the posterior distribution

To be (Bayes)-optimal in offline RL...

Maximize return on average from MDPs from the posterior distribution

This turns out to be a POMDP objective! [Duff et al, 2002]

Theorem (informal): The Bayes-optimal offline RL policy is memory-based.

Intuition: Test-time return objective is a POMDP, so optimal policy is adaptive

Proposition A.1 (Sub-optimality of Markovian policies and optimality of adaptiveness). Let $n \in \mathbb{N}$. There are offline RL problem instances $(\mathcal{D}, p(\mathcal{M}))$ with n-state MDPs where the adaptive Bayes-optimal policy achieves $J_{Bayes}(\pi_{adaptive}^*) = -2n$ but the highest performing Markovian policy achieves return of a magnitude worse: $J_{Bayes}(\pi_{markov}^*) \leq -\frac{1}{2}n^2$.

How can we learn to adapt in Offline RL?

Approach

$$\max_{\pi} J_{Bayes}(\pi) = \mathbb{E}_{M \sim P(M|D)}[J_{M}(\pi)]$$
 Average over likely MDPs given offline dataset

Follow the policy gradient of the Bayesian offline RL objective

The Important Components

- The policy needs to be adaptive to changes in uncertainty
- Value functions must understand how uncertainty can change
- The policy should learn to focus on value functions consistent with the current trajectory

Choosing the right policy class

State-based policies $\pi_{\theta}(a \mid s)$ are suboptimal in offline RL because they don't understand how agent's uncertainty has changed during an episode.

$$\mathbf{b}(h)(M) \propto \exp(-\sum_{i=1}^{T} \mathbf{Surprise}(M, (s_t, a_t, r_t, s_{t+1}))$$

$$\mathbf{b}(h)(M) \propto \exp(-\sum_{i=1}^{T} \mathbf{Surprise}(M, (s_t, a_t, r_t, s_{t+1}))$$

$$\mathbf{b}(h)(M) \propto \exp(-\sum_{i=1}^{T} \mathbf{Surprise}(M, (s_t, a_t, r_t, s_{t+1}))$$

$$\mathbf{b}(h)(M) \propto \exp(-\sum_{i=1}^{T} \mathbf{Surprise}(M, (s_t, a_t, r_t, s_{t+1}))$$

$$\mathbf{b}(h)(M) \propto \exp(-\sum_{i=1}^{T} \mathbf{Surprise}(M, (s_t, a_t, r_t, s_{t+1}))$$

$$\pi(a|s)$$

$$\mathbf{b}(h)(M) \propto \exp(-\sum_{i=1}^{T} \mathbf{Surprise}(M, (s_t, a_t, r_t, s_{t+1}))$$

$$\pi(a \mid S, \mathbf{b}(h))$$

$$\mathbf{b}(h)(M) \propto \exp(-\sum_{i=1}^{T} \mathbf{Surprise}(M, (s_t, a_t, r_t, s_{t+1}))$$

An Abridged Algorithm

- The policy needs to be adaptive to changes in uncertainty
- Value functions must understand how uncertainty can change
- The policy should learn to focus on value functions consistent with the current trajectory

$$Q_1^{\pi}(s, a, \mathbf{b}) =$$

$$r(s,a) + \gamma \mathbb{E}_{s'\sim \mathfrak{D}} \left[\mathbb{E}_{a'\sim \pi} [Q_1^{\pi}(s',a',\mathbf{b}')] \right]$$

where **b**' is the new MDP weighting after witnessing (s, a, r, s')

$$Q_1^{\pi}(s, a, \mathbf{b}) =$$

$$r(s,a) + \gamma \mathbb{E}_{s'\sim \mathfrak{D}} \left[\mathbb{E}_{a'\sim \pi} [Q_1^{\pi}(s',a',\mathbf{b}')] \right]$$

where **b**' is the new MDP weighting after witnessing (s, a, r, s')

$$Q_1^{\pi}(s, a, \mathbf{b}) =$$

$$r(s,a) + \gamma \mathbb{E}_{s'\sim \mathfrak{D}} \left[\mathbb{E}_{a'\sim \pi} [Q_1^{\pi}(s',a',b')] \right]$$

where **b**' is the new MDP weighting after witnessing (s, a, r, s')

The Important Components

- The policy needs to be adaptive to changes in uncertainty
- Value functions must understand how uncertainty can change
- The policy should learn to focus on value functions consistent with the current trajectory

$$\max_{\pi(a|s,\mathbf{b})} \mathbb{E}_{a \sim \pi(\cdot|s,\mathbf{b})} [\mathbb{E}_{M \sim P(M|\mathcal{D})} [\mathbf{b}(M)Q_M^{\pi}(s,a,\mathbf{b})]]$$

$$\max_{\pi(a|s,\mathbf{b})} \mathbb{E}_{a \sim \pi(\cdot|s,\mathbf{b})} [Q_M^{\pi}(s,a,\mathbf{b})]$$

For a single MDP M

$$\max_{\pi(a|s,\mathbf{b})} \mathbb{E}_{a \sim \pi(\cdot|s,\mathbf{b})} [Q_M^{\pi}(s,a,\mathbf{b})]$$

For a single MDP M

The dataset induces a distribution over MDPs $P(M \mid \mathcal{D})$

$$\max_{\pi(a|s,\mathbf{b})} \mathbb{E}_{a \sim \pi(\cdot|s,\mathbf{b})} [\mathbb{E}_{M \sim P(M|\mathcal{D})} [\mathcal{Q}_{M}^{\pi}(s,a,\mathbf{b})]]$$

The dataset induces a distribution over MDPs $P(M \mid \mathscr{D})$

$$\max_{\pi(a|s,\mathbf{b})} \mathbb{E}_{a \sim \pi(\cdot|s,\mathbf{b})} [\mathbb{E}_{M \sim P(M|\mathcal{D})} [\mathcal{Q}_{M}^{\pi}(s,a,\mathbf{b})]]$$

Furthermore, this distribution has changed within the episode (relative MDP weighting)

$$\max_{\pi(a|s,\mathbf{b})} \mathbb{E}_{a \sim \pi(\cdot|s,\mathbf{b})} [\mathbb{E}_{M \sim P(M|\mathcal{D})} [\mathbf{b}(M) Q_M^{\pi}(s,a,\mathbf{b})]]$$

Furthermore, this distribution has changed within the episode (relative MDP weighting)

$$\max_{\pi(a|s,\mathbf{b})} \mathbb{E}_{a \sim \pi(\cdot|s,\mathbf{b})} [\mathbb{E}_{M \sim P(M|\mathcal{D})} [\mathbf{b}(M)Q_M^{\pi}(s,a,\mathbf{b})]]$$

Interpretation: Take actions with high value averaged across MDPs in the posterior that are consistent with the trajectory seen so far

The Important Components

- The policy needs to be adaptive to changes in uncertainty
- Value functions must understand how uncertainty can change
- The policy should learn to focus on value functions consistent with the current trajectory

Ensemble of Value Functions $\{Q_1^{\pi}, Q_2^{\pi}, \dots Q_n^{\pi}\}$

Trained to represent posterior over value functions $P(Q_M^{\pi} | \mathscr{D})$

Trained to represent posterior over value functions $P(Q_M^{\pi} | \mathscr{D})$

Uncertainty-Adaptive Policy

Ensemble of Value Functions
$$\{Q_1^{\pi}, Q_2^{\pi}, \dots Q_n^{\pi}\}$$

Trained to represent posterior over value functions $P(Q_M^{\pi} | \mathcal{D})$

Uncertainty-Adaptive Policy

Ensemble of Value Functions
$$\{Q_1^{\pi}, Q_2^{\pi}, \dots Q_n^{\pi}\}$$

Trained to represent posterior over value functions $P(Q_M^{\pi} | \mathcal{D})$

Uncertainty-Adaptive Policy

Ensemble of Value Functions
$$\{Q_1^{\pi}, Q_2^{\pi}, \dots Q_n^{\pi}\}$$

Trained to represent posterior over value functions $P(Q_M^{\pi} | \mathcal{D})$

Uncertainty-Adaptive Policy

Ensemble of Value Functions
$$\{Q_1^{\pi}, Q_2^{\pi}, \dots Q_n^{\pi}\}$$

Trained to represent posterior over value functions $P(Q_M^{\pi} | \mathcal{D})$

Uncertainty-Adaptive Policy

Ensemble of Value Functions
$$\{Q_1^{\pi}, Q_2^{\pi}, \dots Q_n^{\pi}\}$$

Trained to represent posterior over value functions $P(Q_M^{\pi} | \mathcal{D})$

Uncertainty-Adaptive Policy

Experiments

D4RL Offline RL Benchmark

Task Name	CQL (Kumar et al., 2020)	IQL (Kostrikov et al., 2021b)	SAC-N (An et al., 2021)	APE-V
halfcheetah-random	35.4	31.3±3.5	29.8±1.6	29.9±1.1
halfcheetah-medium	44.4	47.4 ± 0.2	67.5 ± 1.2	$\textbf{69.1} \pm \textbf{0.4}$
halfcheetah-medium-expert	62.4	95.0 ± 1.4	102.7 ± 1.5	$\textbf{101.4} \pm \textbf{1.4}$
halfcheetah-medium-replay	46.2	44.2 ± 1.2	63.9 ± 0.8	$\textbf{64.6} \pm \textbf{0.9}$
hopper-random	10.8	5.3 ± 0.6	31.3 ± 0.0	$31.3 \pm 0.2x$
hopper-medium-expert	111.0	96.9 ± 15.1	110.1 ± 0.3	105.72 ± 3.7
hopper-medium-replay	48.6	94.7 ± 8.6	101.8 ± 0.5	98.5 ± 0.5
walker2d-random	7.0	$5.4{\pm}1.7$	16.3 ± 9.4	15.5±8.5
walker2d-medium	74.5	78.3 ± 8.7	87.9 ± 0.2	$\textbf{90.3} \pm \textbf{1.6}$
walker2d-medium-expert	98.7	109.1 ± 0.2	116.0 ± 6.3	110.0 ± 1.5
walker2d-medium-replay	32.6	73.8 ± 7.1	78.7 ± 0.7	$\textbf{82.9} \pm \textbf{0.4}$

Adaptation Excels in Diverse Environments

Summary

Offline RL policies need the ability to adapt, and to be taught how to adapt

