

Stabilizing Off-Policy Deep Reinforcement Learning from Pixels

Edoardo Cetin*, Philip J. Ball*, Steve Roberts, Oya Celiktutan

Instabilities in Pixel-Based RL

• Pixel observations pose concrete challenges for off-policy reinforcement learning (RL).

• Popular algorithms make use of several *domain-specific* practices.

i.e. no 'general purpose' implementation for different benchmarks/problems.

Algorithm	Visual Deadly Triad Mitigation			
11180111111	TD-Loss	CNN Overfit	Low-Density Reward	
DrQ/RAD	-	Shift/Jitter Augmentations	10-step returns [†]	
DrQ-v2	-	Shift Augmentations	3-step returns	
SAC-AE	VAE Loss	-	-	
SPR	Model-Based Loss	Shift/Jitter Augmentations	10-step returns	
DER	-	Non-Overlapping Strides	20-step returns	
CURL	Contrastive Loss	Shift Augmentations	20-step returns*	

The Visual Deadly Triad

- We focus our empirical analysis on random shift augmentations on the DeepMind Control Suite.
 - Augmentations appear to counteract instabilities exclusive to off-policy critic learning.
- We observe these instabilities arise with the joint presence of three elements (visual deadly triad):
- I. Learning the critic's weights solely from a temporal difference (TD) learning objective.
- 2. End-to-end backpropagation through unregularized convolutional encoders.
- 3. Low-magnitude, sparse environment rewards.

Agent	Final TD-Loss	Final Policy Loss	Return
Augmented	0.021	-0.99	86.5 ± 11.3
Non-Augmented	0.002	-1.05	9.2 ± 12.1
Proprioceptive	0.012	-1.14	79.1 ± 7.7
Frozen CNN (random)	0.023	-0.95	43.6 ± 20.2
Frozen CNN (pre-trained)	0.012	-0.99	77.6 ± 18.5
Non-Augmented (norm r)	18.616	3.86	38.6 ± 16.5
Non-Augmented (10-step returns)	0.003	-1.24	36.5 ± 20.3

$$\nabla_{\theta}(Q_{\theta}(s,a) - (r + Q(s',a')))^2$$

Effects on the Critic

 Not addressing conditions in the visual deadly triad leads to catastrophic self-overfitting

i.e. encoder becomes susceptible to high-frequency noise, making the critic converges to a degenerate solution.

 We find this phenomenon can be measured from spatial discontinuities in the gradients via the Normalized Discontinuity (ND) score:

$$D(z)_{ijc} pprox \mathbb{E}_{v \sim S^1} \left[\left(\frac{\partial z_{ijc}}{\partial v} \right)^2 \right],$$

$$ND(z) = \frac{1}{C \times H \times W} \sum_{c=1}^{C} \sum_{j=1}^{H} \sum_{i=1}^{W} \frac{D(z)_{ijc}}{z_{ijc}^2}$$

Augmented Final Feature Map

Non-augmented Final Feature Map

Critic with Augmentations

Critic w/o Augmentations

Encoder loss surface plots.

Adaptive Local Signal Mixing (A-LIX)

- To prevent this phenomenon we design Adaptive Local Signal Mixing (A-LIX):
 - Smoothing the features in a random local neighborhood within each feature map.
 - During backpropagation discontinuous gradients get randomly redistributed.
- We adaptively tune the magnitude of the regularization (S) based on the ND scores.

Feature map smoothing region.

Gradient redistribution.

Performance Results

A-LIX outperforms SOTA off-policy baselines w/o many auxiliary practices and the same network architecture for both DMC and Atari 100k.

Conclusion

Our work's contributions for pixel-based off-policy RL:

- A new hypothesis to explain instabilities.
- A new score to detect instabilities.
- A-LIX, a new regularization layer to prevent instabilities.

For further details and access to our open-source code, please visit:

sites.google.com/view/a-lix/home

Thank you, and see you at the poster session.

