Particle Transformer for Jet Tagging

Huilin QuCongqiao LiSitian QianCERNPeking University

The Thirty-ninth International Conference on Machine Learning July 17 - 23, 2022

What is a jet?

- a collimated spray of outgoing particles

- What type of particle initiates the jet?

ET TAGGING — AN INTRODUCTION

NEED FOR A LARGE DATASET

JETCLASS: a new large and comprehensive jet dataset

- 100M jets for training: ~two orders of magnitude larger than existing public datasets
- 10 classes: several unexplored scenarios (e.g., H->WW*->4q, H->WW*->{vqq, etc.)

Simulated w/ MadGraph + Pythia + Delphes

(b) Particle Attention Block

(c) Class Attention Block

(b) Particle Attention Block

(c) Class Attention Block

(b) Particle Attention Block

(c) Class Attention Block

(b) Particle Attention Block

PERFORMANCE ON JETCLASS DATASET

	All classes		$H \to b \overline{b}$	$H \to c \bar{c}$	$H \to gg$	$H \to 4q$	$H \to \ell \nu q q'$	$t \to bqq'$	$t \to b \ell \nu$	$W \to qq'$	$Z \to q$
	Accuracy	AUC	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	Rej _{99%}	$\text{Rej}_{50\%}$	Rej _{99.5%}	$\text{Rej}_{50\%}$	Rej _{50%}
PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159
P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311

- Particle Transformer (ParT): significant performance improvement!
 - compared to the existing state-of-the-art, ParticleNet
 - 1.7% increase in accuracy
 - up to 3x increase in background rejection (Rej_{X%})

•
$$\operatorname{Rej}_{X\%} \equiv 1/\operatorname{FPR}$$
 at $\operatorname{TPR} = X\%$,

10

PERFORMANCE ON JETCLASS DATASET

	All classes		$H \to b \overline{b}$	$H \to c \bar{c}$	$H \to gg$	$H \to 4q$	$H \to \ell \nu q q'$	$t \rightarrow bqq'$	$t \to b \ell \nu$	$W \to qq'$	$Z \to q$
	Accuracy	AUC	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	Rej _{99%}	$\text{Rej}_{50\%}$	Rej _{99.5%}	$\text{Rej}_{50\%}$	Rej _{50%}
PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159
P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311

- Particle Transformer (ParT): significant performance improvement!
 - compared to the existing state-of-the-art, ParticleNet
 - 1.7% increase in accuracy
 - up to 3x increase in background rejection (Rej_{X%})
- ParT (plain): plain Transformer w/o interaction features
 - 1.2% drop in accuracy compared to full ParT
 - **Physics-driven modification of self-attention plays a key role!**

$$\blacktriangleright \operatorname{Rej}_{X\%} \equiv 1/\operatorname{FPR} \text{ at } \operatorname{TPR} = X\%,$$

PRE-TRAINING + FINE-TUNING

- The large-scale JETCLASS dataset enables new training paradigm
 - (supervised) pre-training on JETCLASS & fine-tuning on downstream tasks
 - significantly outperforms existing models

Тор	quark tagging	benchmark	$(\sim 2M \text{ jets})$	[SciPost Phy	ys.7 ((2019)	014]
				L /		· /	

Accuracy	AUC	Rej _{50%}	Rej _{30%}		Accuracy	AUC	$\text{Rej}_{50\%}$	Rej _{30%}
0.930	0.9803	201 ± 4	759 ± 24	P-CNN _{exp}	0.827	0.9002	34.7	91.0
	0.9819	247 ± 3	888 ± 17	PFN _{exp}		0.9005	34.7 ± 0.4	
0.940	0.9858	397 ± 7	1615 ± 93	ParticleNet _{exp}	0.840	0.9116	39.8 ± 0.2	98.6 ± 1.3
0.930	0.9807		774.6	rPCN _{exp}		0.9081	38.6 ± 0.5	
0.940	0.9855	392 ± 7	1533 ± 101	ParT _{exp}	0.840	0.9121	41.3 ± 0.3	101.2 ± 1.1
0.929	0.964		435 ± 95	ParticleNet-f.t.exp	0.839	0.9115	40.1 ± 0.2	100.3 ± 1.0
	0.9845	364 ± 9	1642 ± 93	ParT-f.t. _{exp}	0.843	0.9151	42.4 ± 0.2	$f 107.9\pm 0.4$
0.942	0.9868	498 ± 18	2195 ± 173	DEN		0.0052	37.4 ± 0.7	
0.940	0.9858	413 ± 16	1602 ± 81	rrin _{full} ADCNiet	0.840	0.9052	37.4 ± 0.7 49.6 ± 0.4	
0.942	0.9866	487 ± 9	1771 ± 80	ADCINELfull	0.840	0.9120	42.0 ± 0.4	110.4 ± 1.6
0.944	0.9877	691 ± 15	2766 ± 130	PCT _{full}	0.841	0.9140	43.2 ± 0.7	118.0 ± 2.2
				LorentzNet _{full}	0.844	0.9156	42.4 ± 0.4	110.2 ± 1.3
				ParT _{full}	0.849	0.9203	47.9 ± 0.5	129.5 ± 0.9
				ParT-f.t. _{full}	0.852	0.9230	50.6 ± 0.2	$oldsymbol{138.7}\pm oldsymbol{1.3}$
	Accuracy 0.930 0.940 0.930 0.940 0.929 0.942 0.942 0.942 0.942 0.944	AccuracyAUC0.9300.98030.98190.9400.98580.9300.98070.9400.98550.9290.9640.98450.9420.98680.9400.98580.9420.98660.9440.9877	AccuracyAUC $\operatorname{Rej}_{50\%}$ 0.9300.9803 201 ± 4 -0.9803 201 ± 4 -0.9819 247 ± 3 0.9400.9858 397 ± 7 0.9300.98070.9400.9855 392 ± 7 0.9290.9640.9845 364 ± 9 0.9420.9868 498 ± 18 0.9400.9858 413 ± 16 0.9420.9866 487 ± 9 0.9440.9877691 \pm 15	AccuracyAUC $\operatorname{Rej}_{50\%}$ $\operatorname{Rej}_{30\%}$ 0.9300.9803201 ± 4759 ± 240.9819247 ± 3888 ± 170.9400.9858397 ± 71615 ± 930.9300.9807774.60.9400.9855392 ± 71533 ± 1010.9290.964435 ± 950.9845364 ± 91642 ± 930.9420.9868498 ± 182195 ± 1730.9400.9858413 ± 161602 ± 810.9420.9866487 ± 91771 ± 800.9440.9877691 ± 152766 ± 130	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

SUMMARY

- **JETCLASS**: large-scale open dataset for deep-learning research in particle physics
- **Particle Transformer**: new architecture for jet tagging with substantially improved performance

JETCLASS: More possibilities ahead

We invite the community to explore and experiment with this dataset and extend the boundary of deep learning and particle physics even further.

13