

# Structure-Aware Transformer for Graph Representation Learning

Dexiong Chen<sup>\* 1,2</sup>    Leslie O'Bray<sup>\* 1,2</sup>    Karsten Borgwardt<sup>1,2</sup>

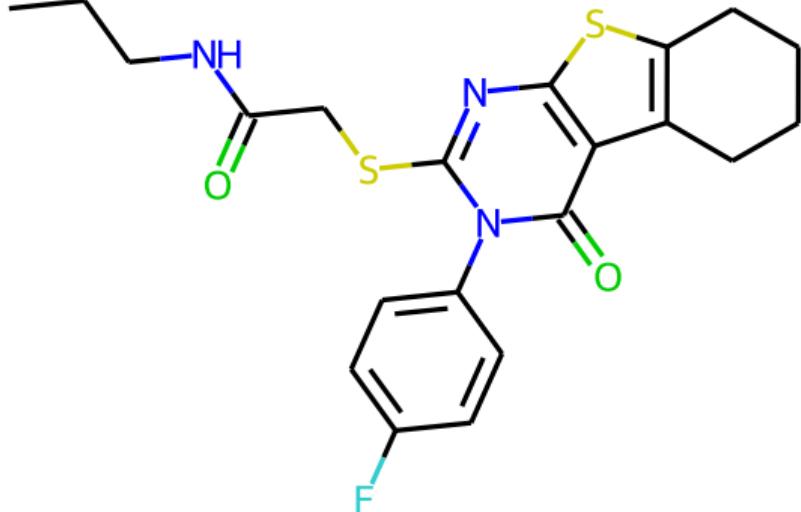
<sup>\*</sup>: Equal contribution



**DBSSE**

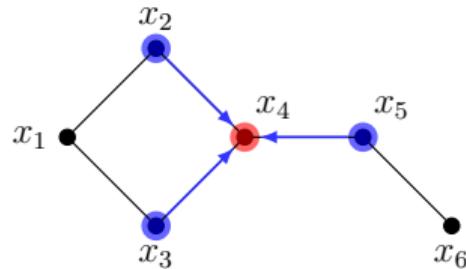
**ETH** zürich

# Graph representation learning



How to define a (parameterized) function  $\varphi_\theta : \mathcal{G} \rightarrow \mathbb{R}^d$  for graph representations that fully explores the information about the **graph structure**?

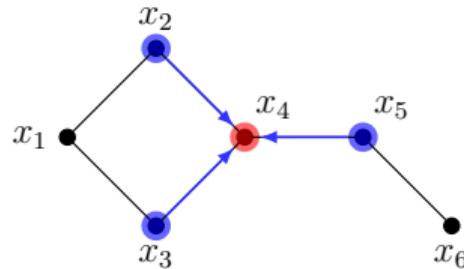
# Message passing graph neural networks use neighborhood aggregation



## Limitations

- ⌘ Modeling **long-range dependencies**
- ⌘ Strong **structural inductive bias**
- ⌘ **Over-smoothing**
- ⌘ **Over-squashing**

# Message passing graph neural networks use neighborhood aggregation



## Limitations

- ⌘ Modeling **long-range dependencies**
- ⌘ Strong **structural inductive bias**
- ⌘ **Over-smoothing**
- ⌘ **Over-squashing**

⇒ We need architectures beyond neighborhood aggregation!

# Graph transformers could address some limitations of MPGNs

## Key idea of existing work:

- \* Encode the **structural or positional relationships** between nodes into the Transformer architecture.

# Graph transformers could address some limitations of MPGNs

## Key idea of existing work:

- Encode the **structural or positional relationships** between nodes into the Transformer architecture.

## Our contribution

- Generalize self-attention to account for local structures by extracting a **subgraph representation** rooted at each node.
- Resulting framework can leverage **any GNN** to extract subgraph representations and create **structure-aware node representations**.
- Empirically outperforms the base GNN  $\Rightarrow$  an effortless enhancer of any GNN.

# From attention to structure-aware attention

## self-attention

$$\text{Attn}(x_v) = \sum_{u \in V} \frac{\kappa_{\text{exp}}(x_v, x_u)}{\sum_{w \in V} \kappa_{\text{exp}}(x_v, x_w)} f(x_u) \quad \Rightarrow \quad \text{SA-attn}(v) = \sum_{u \in V} \frac{\kappa_{\text{graph}}(S_G(v), S_G(u))}{\sum_{w \in V} \kappa_{\text{graph}}(S_G(v), S_G(w))} f(x_u)$$

## structure-aware self-attention

- \* Consider a graph  $G = (V, E, X)$  with node attributes  $X = (x_v)_{v \in V}$ .
- \* Self-attention as **kernel smoothing** with

$$\kappa_{\text{exp}}(x, x') = e^{\frac{\langle w_Q x, w_K x' \rangle}{\sqrt{d_{\text{out}}}}} \quad f(x) = W_V x \in \mathbb{R}^{d_{\text{out}}}$$

- \*  $S_G(v)$  is a subgraph rooted at node  $v$ .  $\kappa_{\text{graph}}$  measures similarity between graphs.
- \* A wide class of **expressive** and **tractable** kernels:

$$\kappa_{\text{graph}}(S_G(v), S_G(u)) = \kappa_{\text{exp}}(\underbrace{\varphi(v, G), \varphi(u, G)}_{\text{structure extractor}})$$

[Tsai et al., 2019]

# Structure extractors

## $k$ -subtree GNN extractor

- Use a GNN to extract the representation of the  $k$ -subtree structure:

$$\varphi(u, G) := \text{GNN}_G^{(k)}(u). \quad (1)$$

- Any existing GNN can be used.

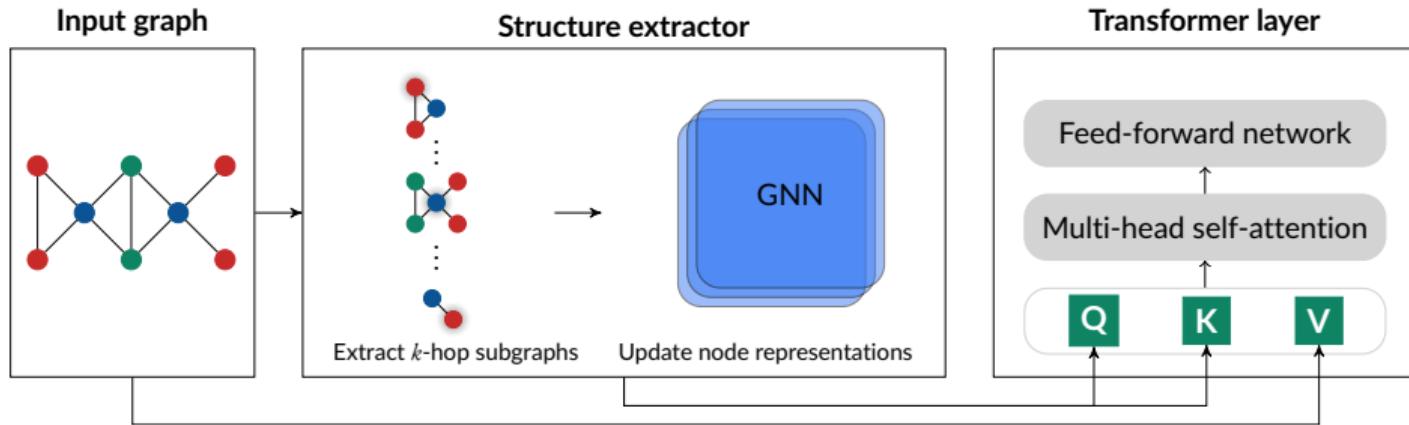
## $k$ -subgraph GNN extractor

- Extract the  $k$ -hop subgraph  $\mathcal{N}_k(u)$  rooted at node  $u$ .
- Use a GNN to compute the representation of the  $k$ -hop subgraph:

$$\varphi(u, G) := \sum_{v \in \mathcal{N}_k(u)} \text{GNN}_{\mathcal{N}_k(u)}^{(k)}(v). \quad (2)$$

- More **expressive** but computationally more **expensive**.

# Structure-aware transformer



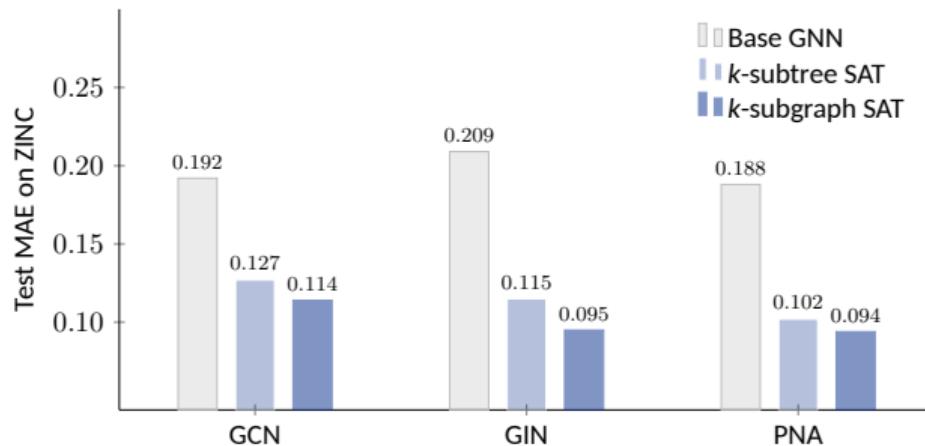
⇒ SAT consists of multiple Transformer layers.

# Experiments: SAT achieves SOTA results on several datasets

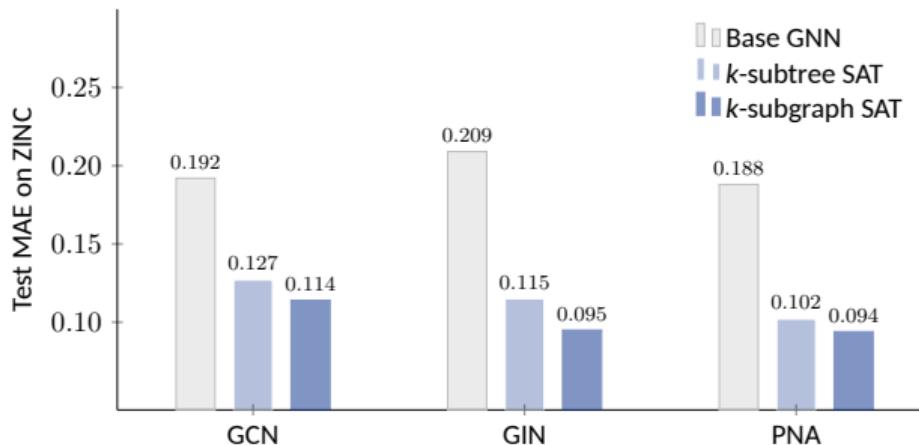
|                  | ZINC ↓                              | CLUSTER ↑                            | PATTERN ↑                            |                  | OGBG-PPA ↑          | OGBG-CODE2 ↑        |
|------------------|-------------------------------------|--------------------------------------|--------------------------------------|------------------|---------------------|---------------------|
| # graphs         | 12,000                              | 12,000                               | 14,000                               | # graphs         | 158,100             | 452,741             |
| Avg. # nodes     | 23.2                                | 117.2                                | 118.9                                | Avg. # nodes     | 243.4               | 125.2               |
| Avg. # edges     | 49.8                                | 4,303.9                              | 6,098.9                              | Avg. # edges     | 2,266.1             | 124.2               |
| Metric           | MAE                                 | Accuracy                             | Accuracy                             | Metric           | Accuracy            | F1 score            |
| GIN              | $0.387 \pm 0.015$                   | $64.716 \pm 1.553$                   | $85.590 \pm 0.011$                   | GCN-Virtual Node | $0.6857 \pm 0.0061$ | $0.1595 \pm 0.0018$ |
| GAT              | $0.384 \pm 0.007$                   | $70.587 \pm 0.447$                   | $78.271 \pm 0.186$                   | GIN-Virtual Node | $0.7037 \pm 0.0107$ | $0.1581 \pm 0.0026$ |
| PNA              | $0.188 \pm 0.004$                   | $67.077 \pm 0.977^*$                 | $86.567 \pm 0.075$                   | Transformer      | $0.6454 \pm 0.0033$ | $0.1670 \pm 0.0015$ |
| Transformer+RWPE | $0.310 \pm 0.005$                   | $29.622 \pm 0.176$                   | $86.183 \pm 0.019$                   | GraphTrans       | -                   | $0.1830 \pm 0.0024$ |
| SAN              | $0.139 \pm 0.006$                   | $76.691 \pm 0.650$                   | $86.581 \pm 0.037$                   | k-subtree SAT    | $0.7522 \pm 0.0056$ | $0.1937 \pm 0.0028$ |
| Graphomer        | $0.122 \pm 0.006$                   | -                                    | -                                    |                  |                     |                     |
| k-subtree SAT    | $0.102 \pm 0.005$                   | $77.751 \pm 0.121$                   | <b><math>86.865 \pm 0.043</math></b> |                  |                     |                     |
| k-subgraph SAT   | <b><math>0.094 \pm 0.008</math></b> | <b><math>77.856 \pm 0.104</math></b> | $86.848 \pm 0.037$                   |                  |                     |                     |

[Xu et al., 2019, Veličković et al., 2018, Corso et al., 2020, Kreuzer et al., 2021, Ying et al., 2021]

# SAT empirically always improved upon base GNNs



# SAT empirically always improved upon base GNNs



- \* More results on hyperparameter studies and model interpretation?
- \* Please consult our github repo and come to our poster!

<https://github.com/BorgwardtLab/SAT>



# References I

- G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković. Principal neighbourhood aggregation for graph nets. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
- D. Kreuzer, D. Beaini, W. L. Hamilton, V. Létourneau, and P. Tossou. Rethinking graph transformers with spectral attention. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.
- Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov. Transformer dissection: A unified understanding of transformer's attention via the lens of kernel. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2019.
- P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks. In *International Conference on Learning Representations (ICLR)*, 2018.
- K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations (ICLR)*, 2019.
- C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do transformers really perform badly for graph representation? In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.