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Graph representation learning

How to define a (parameterized) function @y : G — R for graph representations that
fully explores the information about the graph structure?

ETHziirich Structure-Aware Transformer 2/9 Leslie O'Bray ICML 2022 2/9



Message passing graph neural networks use neighborhood aggregation
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Limitations
%k Modeling long-range dependencies
# Strong structural inductive bias
#* Over-smoothing
% Over-squashing
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Message passing graph neural networks use neighborhood aggregation
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Limitations
%k Modeling long-range dependencies
# Strong structural inductive bias
#* Over-smoothing
% Over-squashing

= We need architectures beyond neighborhood aggregation!
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Graph transformers could address some limitations of MPGNNs

Key idea of existing work:

%k Encode the structural or positional relationships between nodes into the
Transformer architecture.
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Graph transformers could address some limitations of MPGNNs

Key idea of existing work:

%k Encode the structural or positional relationships between nodes into the
Transformer architecture.

Our contribution

% Generalize self-attention to account for local structures by extracting a subgraph
representation rooted at each node.

#® Resulting framework can leverage any GNN to extract subgraph representations and
create structure-aware node representations.

# Empirically outperforms the base GNN => an effortless enhancer of any GNN.
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From attention to structure-aware attention

self-attention structure-aware self-attention
mexp(xv,xu) Kgraph (S6(v),S6(u))
Attn(x,) = E f(x,) = SA-attn(v) = E f(xy)
' uev Dwev Fexp (v Xw) uev >_wev Feraph(Sc(V), S6(wW))

ETHziirich

% Consider a graph G = (V, E, X) with node attributes X = (x, )vev.
# Self-attention as kernel smoothing with

<WQx,WKx’>

Kexp(X, X') =€ Vout f(x) = Wyx € R%ut

# Sg(v) is a subgraph rooted at node v. Kgr,pn Measures similarity between graphs.
% A wide class of expressive and tractable kernels:

Kgraph (SG(V)7 SG(U)) = "iexp((tp(vv G)7 SO(U7 G))

structure extractor
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Structure extractors

k-subtree GNN extractor
% Use a GNN to extract the representation of the k-subtree structure:

0(u,G) := GNNY (u),
# Any existing GNN can be used.

k-subgraph GNN extractor
% Extract the k-hop subgraph N (u) rooted at node u.
%k Use a GNN to compute the representation of the k-hop subgraph:

k
p(u,G) = > GNNY (v).
vEN(u)

%k More expressive but computationally more expensive.
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Structure-aware transformer

Input graph Structure extractor Transformer layer
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Feed-forward network

1

Multi-head self-attention

= SAT consists of multiple Transformer layers.
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Experiments: SAT achieves SOTA results on several datasets

ETHziirich

OGBG-PPA 1 OGBG-CODE2
# graphs 158,100 452,741
Avg. # nodes 243.4 125.2
Avg. # edges 2,266.1 124.2
Metric Accuracy F1 score
GCN-Virtual Node 0.68574+0.0061 0.1595+0.0018
GIN-Virtual Node  0.703740.0107 0.1581-+0.0026

ZINC | CLUSTER 1 PATTERN 1
# graphs 12,000 12,000 14,000
Avg. # nodes 23.2 117.2 118.9
Avg. # edges 49.8 4,303.9 6,098.9
Metric MAE Accuracy Accuracy
GIN 0.387+0.015 64.716+1.553  85.590+0.011
GAT 0.384+0.007 70.587+0.447 78.271+0.186
PNA 0.188+0.004 67.077+0.977 86.567+0.075
Transformer+RWPE  0.310+0.005 29.622+0.176  86.183+0.019
SAN 0.139+0.006  76.691+0.650 86.581+0.037
Graphormer 0.122+0.006 - -
k-subtree SAT 0.102+0.005 77.751+0.121  86.865+0.043
k-subgraph SAT 0.094+0.008 77.856+0.104 86.848+0.037

Transformer
GraphTrans

0.6454+0.0033

0.1670+0.0015
0.1830+0.0024

k-subtree SAT

0.7522+0.0056

0.1937+0.0028
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SAT empirically always improved upon base GNNs
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https://github.com/BorgwardtLab/SAT

SAT empirically always improved upon base GNNs

Base GNN
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%k Please consult our github repo and come to our poster!
https://github.com/BorgwardtLab/SAT
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https://github.com/BorgwardtLab/SAT
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