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Problem

Zhou, Haoyi, et al. "Informer: Beyond efficient transformer for long sequence time-series forecasting." Proceedings of AAAI. 2021.



Motivations

Trend and Seasonality Discrepancy

Seasonal and Trend decomposition



Motivations

We can get a compact Representation of Time Series in Frequency Domain

Fourier transform

Fourier inverse transform



Model Structures
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Frequency Enhanced Block: Feature representation for encoder and decoder signal separately
Frequency Enhanced Attention: Cross feature interaction between encoder and decoder signal
MOE Decomposition: STL decomposition
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Experiments

Random policy is better

Mode saturation at 32



Experiments

Rule of thumb for mode selection && model selection

Wavelet for complex dataset
Fourier for less complex dataset

More mode for more complex dataset
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Experiments

Running Time: O(L)



Conclusion

• We propose a frequency enhanced decomposed Transformer architecture with mixture of experts 
for seasonal-trend decomposition in order to better capture global properties of time series.

• We propose Fourier enhanced blocks and Wavelet enhanced blocks in the Transformer structure 
that allows us to capture important structures in time series through frequency domain mapping. 
They serve as substitutions for both self-attention and cross-attention blocks.

• By randomly selecting a fixed number of Fourier components, the proposed model achieves 
linear computational complexity and memory cost. The effectiveness of this selection method is 
verified both theoretically and empirically.

• We conduct extensive experiments over 6 benchmark datasets across multiple domains (energy, 
traffic, economics, weather and disease). Our empirical studies show that the proposed model 
improves the performance of state-of-the-art methods by 14.8% and 22.6% for multivariate and 
univariate forecasting, respectively.
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https://github.com/MAZiqing/FEDformer

https://arxiv.org/abs/2201.12740


