FEDformer

Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, Rong Jin

ICML22

01 Problem

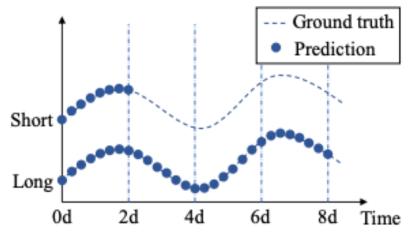
02 Motivations

03 Model Structures

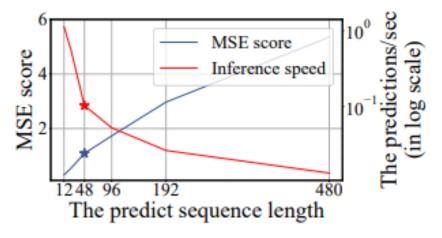
04 Experiments

05 Conclusions

Problem



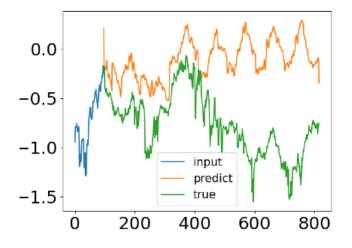
(a) Sequence Forecasting.

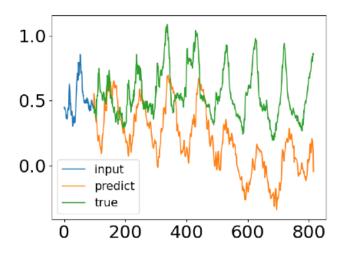


(b) Run LSTM on sequences.

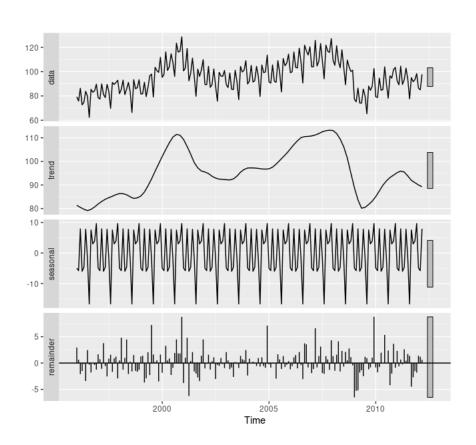
Zhou, Haoyi, et al. "Informer: Beyond efficient transformer for long sequence time-series forecasting." *Proceedings of AAAI.* 2021.

Motivations





Trend and Seasonality Discrepancy



Seasonal and Trend decomposition

Motivations

We can get a compact Representation of Time Series in Frequency Domain

Theorem 1. Assume that $\mu(A)$, the coherence measure of matrix A, is $\Omega(k/n)$. Then, with a high probability, we have

$$|A - P_{A'}(A)| \le (1 + \epsilon)|A - A_k|$$

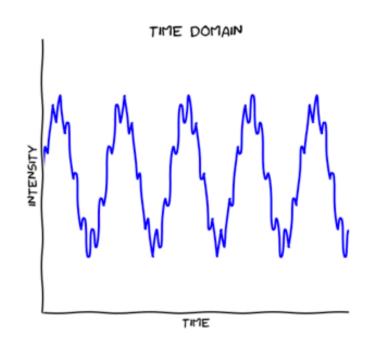
if
$$s = O(k^2/\epsilon^2)$$
.

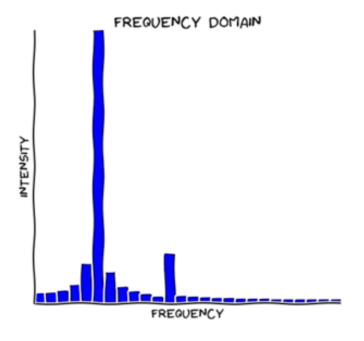
Fourier transform

$$\hat{f}\left(\xi
ight) =\int_{-\infty}^{\infty}f(x)\;e^{-i2\pi\xi x}\,dx,\quadorall\;\xi\in\mathbb{R}.$$

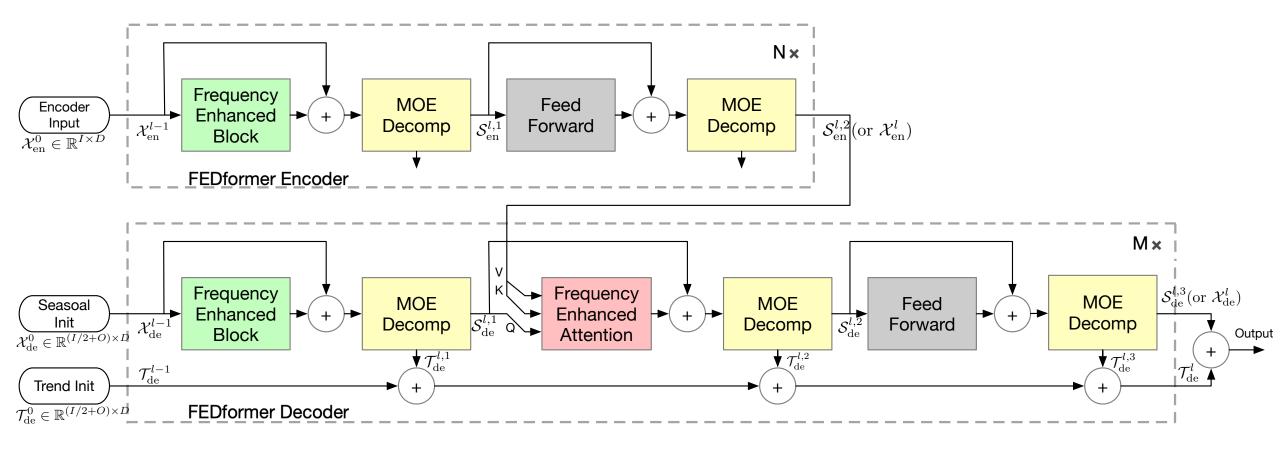
Fourier inverse transform

$$f(x)=\int_{-\infty}^{\infty}\hat{f}\left(\xi
ight)e^{i2\pi\xi x}\,d\xi,\quadorall\,x\in\mathbb{R},$$



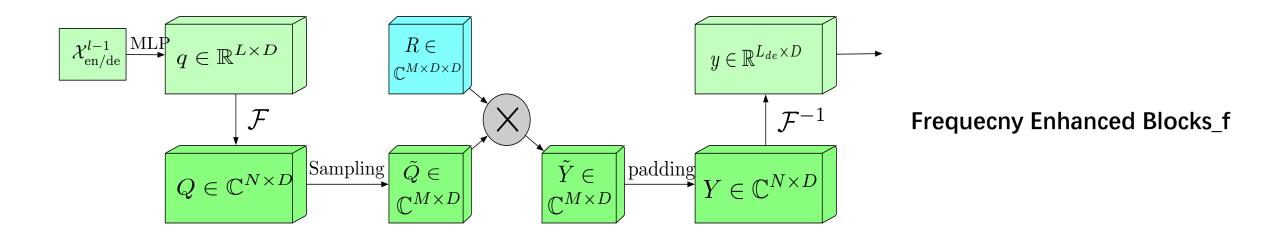


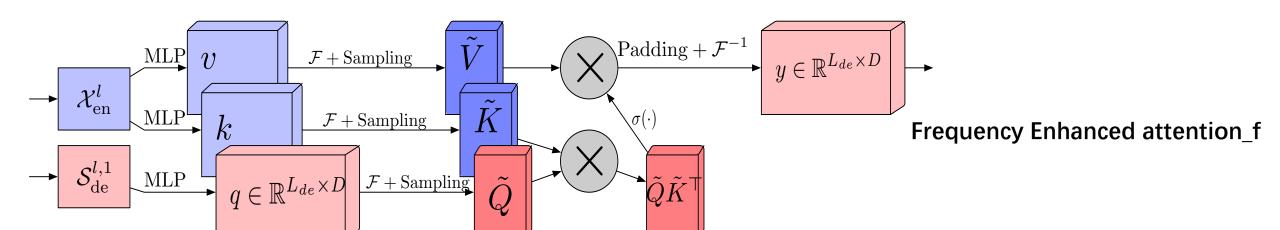
Model Structures



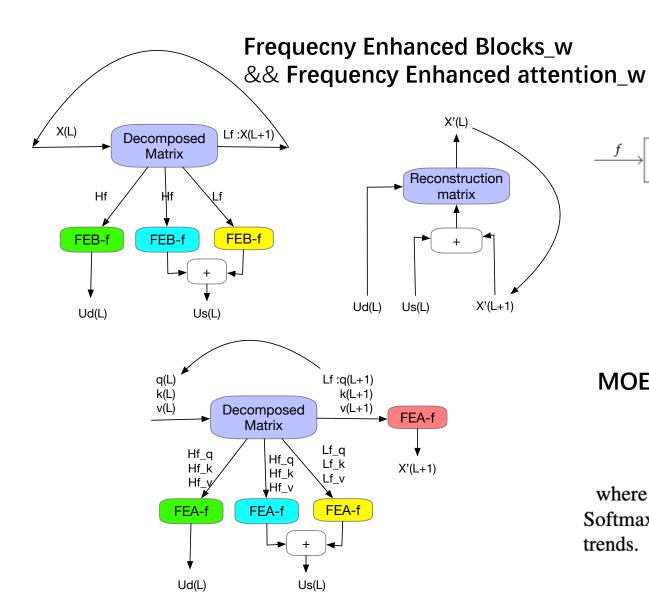
Frequency Enhanced Block: **Feature representation** for encoder and decoder signal separately Frequency Enhanced Attention: **Cross feature** interaction between encoder and decoder signal MOE Decomposition: **STL** decomposition

Model Structures

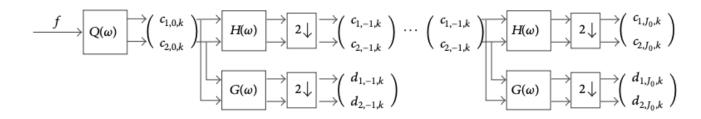




Model Structures



Discrete Multiwavelet Decomposition



MOE Seasonal-Trend Decomposition

$$\mathbf{X_{trend}} = \mathbf{Softmax}(L(x)) * (F(x)), \tag{10}$$

where $F(\cdot)$ is a set of average pooling filters and Softmax(L(x)) is the weights for mixing these extracted trends.

Table 2. Multivariate long-term series forecasting results on six datasets with input length I=96 and prediction length $O\in\{96,192,336,720\}$ (For ILI dataset, we use input length I=36 and prediction length $O\in\{24,36,48,60\}$). A lower MSE indicates better performance, and the best results are highlighted in bold.

Methods	Metric	96	ETT 192	7m2 336	720	96	Elect 192	ricity 336	720	96	Exch 192	ange 336	720	96	Tra 192	affic 336	720	96	Wea 192	ther 336	720	24	36	LI 48	60
FEDformer-f	MSE MAE		002													0.621 0.383				0.339 0.380	0.403 0.428				2.857 1.157
FEDformer-w																0.570 0.323									
Autoformer																0.622 0.337	0.660 0.408								
Informer																0.777 0.420									
LogTrans	MSE MAE															0.7337 0.408	0.717 0.396								5.278 1.560
Reformer	MSE MAE	0.658 0.619	1.078 0.827	-10 .,			0.348 0.433									0.742 0.420	01100	0.007	0	0.00,	1.130 0.792			4.832 1.465	4.882 1.483

Table 1. A subset of the benchmark showing both Mean and STD.

MSE	ET	Γm2	Electricity	Exchange	Traffic	
J-QH 19 33 72	$ \begin{array}{c cccc} 2 & 0.269 \pm \\ 6 & 0.325 \pm \end{array} $	0.0042 0.0023 0.0015 0.0038	$\begin{array}{c} 0.194 \pm 0.0008 \\ 0.201 \pm 0.0015 \\ 0.215 \pm 0.0018 \\ 0.246 \pm 0.0020 \end{array}$	$\begin{array}{c} 0.148 \pm 0.002 \\ 0.270 \pm 0.008 \\ 0.460 \pm 0.016 \\ 1.195 \pm 0.026 \end{array}$	$\begin{array}{c} 0.217 \pm 0.008 \\ 0.604 \pm 0.004 \\ 0.621 \pm 0.006 \\ 0.626 \pm 0.003 \end{array}$	
Autoformer 19 33 72	2 0.281 ± 0.339 ±	0.018	0.201 ± 0.003 0.222 ± 0.003 0.231 ± 0.006 0.254 ± 0.007	0.197 ± 0.019 0.300 ± 0.020 0.509 ± 0.041 1.447 ± 0.084	0.613 ± 0.028 0.616 ± 0.042 0.622 ± 0.016 0.419 ± 0.017	

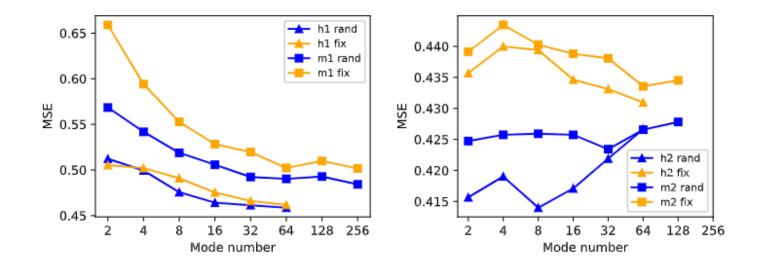


Figure 6. Comparison of two base-modes selection method (Fix&Rand). Rand policy means randomly selecting a subset of modes, Fix policy means selecting the lowest frequency modes. Two policies are compared on a variety of base-modes number $M \in \{2, 4, 8...256\}$ on ETT full-benchmark (h1, m1, h2, m2).

Random policy is better

Mode **saturation** at 32

Rule of thumb for mode selection && model selection

Table 3. Perm Entropy Complexity comparison for multi vs uni

Permutation Entropy	Electricity	Traffic	Exchange	Illness
Multivariate	0.910	0.792	0.961	0.960
Univariate	0.902	0.790	0.949	0.867

Wavelet for complex dataset Fourier for less complex dataset

Table 2. Complexity experiments for datasets

Methods	ETTh1	ETTh2	ETTm1	ETTm2
Permutation Entropy	0.954	0.866	0.959	0.788
SVD Entropy	0.807	0.495	0.589	0.361

More mode for more complex dataset

The Kolmogorov-Smirnov statistic is

$$D_{n,m} = \sup_{x} |F_{1,n}(x) - F_{2,m}(x)|$$

$$D_{n,m} > \sqrt{-\frac{1}{2}\ln\left(\frac{\alpha}{2}\right)} \cdot \sqrt{\frac{n+m}{n\cdot m}},$$

K-S Test: Sample 1 / Sample 2

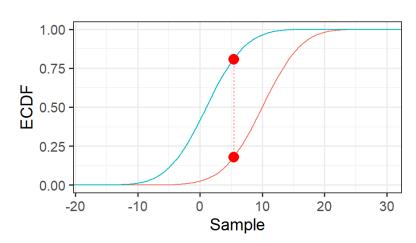
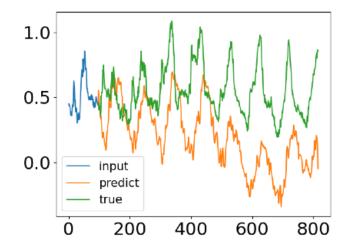


Table 5. P-values of Kolmogrov-Smirnov test of different transformer models for long-term forecasting output on ETTm1 and ETTm2 dataset. Larger value indicates the hypothesis (the input sequence and forecasting output come from the same distribution) is less likely to be rejected. The best results are highlighted.

Me	thods	Transformer	Informer	Autoformer	FEDformer	True
	96	0.0090	0.0055	0.020	0.048	0.023
ETTm1	192	0.0052	0.0029	0.015	0.028	0.013
Ę	336	0.0022	0.0019	0.012	0.015	0.010
щ	720	0.0023	0.0016	0.008	0.014	0.004
7	96	0.0012	0.0008	0.079	0.071	0.087
ETTm2	192	0.0011	0.0006	0.047	0.045	0.060
E	336	0.0005	0.00009	0.027	0.028	0.042
щ	720	0.0008	0.0002	0.023	0.021	0.023
С	ount	0	0	3	5	NA



Running Time: O(L)

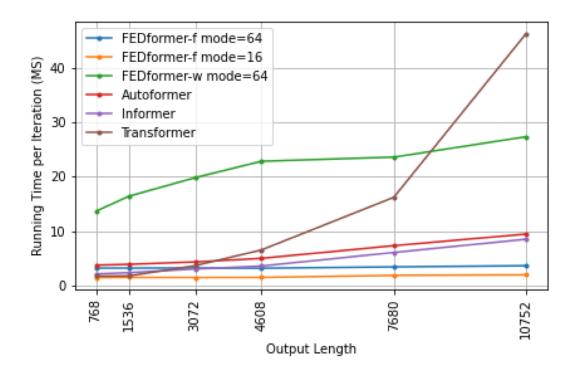


Table 1. Complexity analysis of different forecasting models.

Methods	Trai	Testing	
Methods	Time	Memory	Steps
FEDformer	$\mathcal{O}(L)$	$\mathcal{O}(L)$	1
Autoformer	$\mathcal{O}(L \log L)$	$\mathcal{O}(L \log L)$	1
Informer	$\mathcal{O}(L \log L)$	$\mathcal{O}(L \log L)$	1
Transformer	$\mathcal{O}\left(L^{2} ight)$	$\mathcal{O}\left(L^2 ight)$	L
LogTrans	$\mathcal{O}(L \log L)$	$\mathcal{O}\left(L^{2} ight)$	1
Reformer	$\mathcal{O}(L \log L)$	$\mathcal{O}(L \log L)$	L
LSTM	$\mathcal{O}(L)$	$\mathcal{O}(L)$	L

— Conclusion

- We propose a frequency enhanced decomposed Transformer architecture with mixture of experts for seasonal-trend decomposition in order to better capture global properties of time series.
- We propose Fourier enhanced blocks and Wavelet enhanced blocks in the Transformer structure
 that allows us to capture important structures in time series through frequency domain mapping.
 They serve as substitutions for both self-attention and cross-attention blocks.
- By **randomly selecting** a **fixed number** of Fourier components, the proposed model achieves linear computational complexity and memory cost. The effectiveness of this selection method is verified both theoretically and empirically.
- We conduct extensive experiments over 6 benchmark datasets across multiple domains (energy, traffic, economics, weather and disease). Our empirical studies show that the proposed model improves the performance of state-of-the-art methods by 14.8% and 22.6% for multivariate and univariate forecasting, respectively.

Thank You

https://arxiv.org/abs/2201.12740

https://github.com/MAZiqing/FEDformer