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Our View of Recommender Systems
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Problem Formulation

e Online interaction in contextual bandit framework
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System observes binary choices User observes rewards

System’s goal: identify the best User’s goal: no regret about her
arm for the user past decisions \
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Modeling a learning user

« Example: a user running LinUCB

—_—

....- B Linear reward assumption [APS11]:
*%‘,H

..-.-.- f Bk ;40" | Unknown to both user and system:
P ,t|

= Runridge regression on #; = {(xa,+,7:)}._; to estimate 0;

6. = Oillv, <O (y/dlog }) Vi=Vo+ i xox]

= Choose the item with the largest upper confidence bound:

’Fi,t — H;FXz',t + Bt”xz‘,tHVt—l By = O(4/logt)
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Modeling a learning user

« Generalize user’s learning behavior

= Canuse any algorithm ' on H; = {(xai,t,ri)}ﬁ;} to estimate 0;,1 = F(H;)
such that

8. = Bllv. < clTlg(d)
* v € (() l) Inaccuracy of the
’ learning algorithm

= Estimate rewards with arbitrary confidence level:

Fie = 07 X +|B; |1 lly -
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Account for a wide range of user
behaviors when facing uncertainty,
including even irrational behaviors
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What can we learn from such a user?

o Revealed preference between the recommended items
= A cutting hyperplane suggesting where the true model parameter is!
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Ellipsoid method!
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Background: ellipsoid method

« An iterative optimization method [GLS81]

= A classical method for linear programming
= Polynomial time

Where the optimal
solution locates  —_
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Find a good cut

o A good cut = good direction + good depth
| ™~

Reduces uncertainty along all directions Shrinks the volume
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good cutting direction good cutting depth
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Solution: Noise-Robust Active Ellipsoid Search

« Balancing three factors

Until we are ready

. (Exploration) If ¢ < Ty and oy > — .5, make recommendations to

1. (Cut) If ¢t <Tp and a¢ > —74, cut & and update (x;, P;).
/[/2

Improve our
estimation ensure the user is exposed to the least explored directions in V;.

P h s .
repare the user 3. (Exploitation) If ¢ > Ty, recommend the empirically best arm to

the user. /

We emphasize the notion of strong regret:

Rr = 23:1 ‘93 (2X* — X1,t — X2,t)
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Regret analysis

. For proper choices of 7, with high probability, the regret of RAES is

upper bounded by Difficulty of the learning
i +~problem increases with y!

O(d*TE)

o The expected regret of any algorithm facing a learning user is at least

At least as difficult as linear
~contextual bandit problems.

O(dTT2)




Experiment results

Results
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Summary

o Learning from a learning user in a contextual setting is still
possible

= An efficient ellipsoid method to search for the ground-truth model parameters
based on users’ revealed preferences

= Nearly optimal regret guarantee is provided

o Next Step: learning from strategic learning agents?

= They can be cooperating or competing with each other
= They might share distinct objectives

O BanditLib: https://github.com/HCDM/BanditLib
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