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Classic View of Recommender Systems
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Our View of Recommender Systems
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Problem Formulation
• Online interaction in contextual bandit framework

Problem setup 4

System’s goal: identify the best 
arm for the user

System observes binary choices

…Item set

recommendation decision

User observes rewards

User’s goal: no regret about her 
past decisions



• Example: a user running LinUCB


Modeling a learning user

User behavior model 5

Linear reward assumption [APS11]:

Unknown to both user and system!

▪ Run ridge regression on                                to estimate


▪ Choose the item with the largest upper confidence bound:



Modeling a learning user
• Generalize user’s learning behavior

User behavior model 6

Inaccuracy of the 
learning algorithm

▪ Can use any algorithm       on                                       to estimate

           such that

▪ Estimate rewards with arbitrary confidence level:

Account for a wide range of user 
behaviors when facing uncertainty, 
including even irrational behaviors



What can we learn from such a user?
• Revealed preference between the recommended items

▪ A cutting hyperplane suggesting where the true model parameter is!

Insight 7
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Ellipsoid method!



Background: ellipsoid method
• An iterative optimization method [GLS81]


▪ A classical method for linear programming

▪ Polynomial time 

Ellipsoid method 8

Where the optimal 
solution locates



• A good cut = good direction + good depth
Find a good cut

Ellipsoid search 9

good cutting direction good cutting depth

Shrinks the volumeReduces uncertainty along all directions



Solution: Noise-Robust Active Ellipsoid Search
• Balancing three factors

Solution 10

Until we are ready

We emphasize the notion of strong regret:

Prepare the user

Improve our 
estimation



Regret analysis
• For proper choices of  , with high probability, the regret of RAES is 

upper bounded by


• The expected regret of any algorithm facing a learning user is at least


T0

Regret 11

Difficulty of the learning 
problem increases with !γ

At least as difficult as linear 
contextual bandit problems.



Experiment results
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γ = 0.2, d = 20

V0 = diag(1,⋯,1,100,⋯,100)



Summary
• Learning from a learning user in a contextual setting is still 

possible

▪ An efficient ellipsoid method to search for the ground-truth model parameters 

based on users’ revealed preferences

▪ Nearly optimal regret guarantee is provided


• Next Step: learning from strategic learning agents?

▪ They can be cooperating or competing with each other

▪ They might share distinct objectives 
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BanditLib: https://github.com/HCDM/BanditLib
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