

Learning from a Learning User for Optimal Recommendations

Fan Yao, Chuanhao Li, Denis Nekipelov, Hongning Wang, Haifeng Xu

Classic View of Recommender Systems

Our View of Recommender Systems

Motivation

Problem Formulation

Online interaction in contextual bandit framework

Item set

$$\mathcal{A} = \{\mathbf{x}_a \in \mathbb{R}^d\}_{i=1}^K$$

$$\mathcal{H}_t = \{(\mathbf{x}_{a_i,t}, y_i = \{0,1\})\}_{i=1}^{t-1}$$

$$oldsymbol{a}_{0,t},oldsymbol{a}_{1,t}$$

$$\mathcal{H}_t = \{(\mathbf{x}_{a_i,t}, r_i)\}_{i=1}^{t-1}$$

System observes binary choices

System's goal: identify the best arm for the user

User observes rewards

User's goal: no regret about her past decisions

5

Modeling a learning user

Example: a user running LinUCB

Linear reward assumption [APS11]:
$$\mathbf{E}[r_i] = \mathbf{x}_{a_i,t}^{\top} \boldsymbol{\theta}^* \quad \text{Unknown to both user and system!}$$

Run ridge regression on $\mathcal{H}_t = \{(\mathbf{x}_{a_i,t}, r_i)\}_{i=1}^{t-1}$ to estimate $\boldsymbol{\theta}_t$

$$\|\boldsymbol{\theta}_* - \boldsymbol{\theta}_t\|_{V_t} \le O\left(\sqrt{d\log \frac{t}{\delta}}\right)$$
 $V_t = V_0 + \sum_{s=1}^{t-1} \mathbf{x}_s \mathbf{x}_s^{\top}$

$$V_t = V_0 + \sum_{s=1}^{t-1} \mathbf{x}_s \mathbf{x}_s^{\mathsf{T}}$$

Choose the item with the largest upper confidence bound:

$$\hat{r}_{i,t} = \theta_t^{\top} \mathbf{x}_{i,t} + \beta_t \|\mathbf{x}_{i,t}\|_{V_t^{-1}} \qquad \beta_t = O(\sqrt{\log t})$$

Modeling a learning user

- Generalize user's learning behavior
 - Can use any algorithm F on $\mathcal{H}_t = \{(\mathbf{x}_{a_i,t},r_i)\}_{i=1}^{t-1}$ to estimate $\boldsymbol{\theta}_{t+1} = F(\mathcal{H}_t)$ such that

$$\|\pmb{\theta}_*-\pmb{\theta}_t\|_{V_t}\leq c_1 \underline{t^{\gamma_1}}g(\delta)$$

$$\gamma_1\in (0,\frac{1}{2}) \ \text{ Inaccuracy of the learning algorithm}$$

Estimate rewards with arbitrary confidence level:

$$\hat{r}_{i,t} = \theta_t^{\top} \mathbf{x}_{i,t} + \beta_t^{(i)} \|\mathbf{x}_{i,t}\|_{V_t^{-1}}$$

$$\beta_t^{(i)} \in [-c_2 t^{\gamma_2}, c_2 t^{\gamma_2}]$$

Account for a wide range of user behaviors when facing uncertainty, including even irrational behaviors

What can we learn from such a user?

- Revealed preference between the recommended items
 - A cutting hyperplane suggesting where the true model parameter is!

$$\hat{r}_{1,t} = \theta_t^{\top} \mathbf{x}_{1,t} + \beta_t^{(1)} \|\mathbf{x}_{1,t}\|_{V_t^{-1}} \leq \hat{r}_{2,t} = \theta_t^{\top} \mathbf{x}_{2,t} + \beta_t^{(2)} \|\mathbf{x}_{2,t}\|_{V_t^{-1}}$$

Our learning target!

$$\frac{\theta_*^\top(\mathbf{x}_{1,t} - \mathbf{x}_{2,t}) \leq \theta_t^\top(\mathbf{x}_{1,t} - \mathbf{x}_{2,t}) + (\theta_* - \theta_t)^\top(\mathbf{x}_{1,t} - \mathbf{x}_{2,t})}{\text{Cutting direction}} \leq ct^\gamma \Big(\|\mathbf{x}_{1,t}\|_{V_t^{-1}} + \|\mathbf{x}_{2,t}\|_{V_t^{-1}} + g(\delta) \|\mathbf{x}_{1,t} - \mathbf{x}_{2,t}\|_{V_t^{-1}} \Big)$$

User's decision error

Ellipsoid method!

Insight 7

Background: ellipsoid method

- An iterative optimization method [GLS81]
 - A classical method for linear programming

Polynomial time

Where the optimal solution locates

x(0)

Ellipsoid method

Find a good cut

• A good cut = good direction + good depth

Reduces uncertainty along all directions

Shrinks the volume

$$\alpha < -\frac{1}{d} : \operatorname{Vol}(\mathcal{E}') > \operatorname{Vol}(\mathcal{E})$$

$$\alpha = -\frac{1}{d} \quad \alpha = -\frac{1}{d} : \operatorname{Vol}(\mathcal{E}') = \operatorname{Vol}(\mathcal{E})$$

$$\alpha = 0$$

$$-\frac{1}{d} < \alpha < 1 : \operatorname{Vol}(\mathcal{E}') < \operatorname{Vol}(\mathcal{E})$$

good cutting direction

good cutting depth

Solution: Noise-Robust Active Ellipsoid Search

Balancing three factors

estimation Prepare the user

- Until we are ready

 1. (Cut) If $t \leq T_0$ and $\alpha_t \geq -\frac{1}{kd}$, cut \mathcal{E}_t and update (\mathbf{x}_t, P_t) .

 2. (Exploration) If $t \leq T_0$ and $\alpha_t > -\frac{1}{kd}$, make recommendations to ensure the user is exposed to the least explored directions in V_t .
 - 3. (Exploitation) If $t > T_0$, recommend the empirically best arm to the user.

We emphasize the notion of strong regret:

$$R_T = \sum_{t=1}^T \theta_*^{\top} (2\mathbf{x}_* - \mathbf{x}_{1,t} - \mathbf{x}_{2,t})$$

Solution

Regret analysis

• For proper choices of T_0 , with high probability, the regret of RAES is upper bounded by Difficulty of the learning

$$O(d^2T^{rac{1}{2}+\gamma})$$
 problem increases with $\gamma!$

• The expected regret of any algorithm facing a learning user is at least

At least as difficult as linear contextual bandit problems. $\Omega(dT^{rac{1}{2}})$

Regret 11

$$\gamma = 0.2, \qquad d = 20$$

$$V_0 = diag(1, \dots, 1, 100, \dots, 100)$$

Results 12

Summary

- Learning from a learning user in a contextual setting is still possible
 - An efficient ellipsoid method to search for the ground-truth model parameters based on users' revealed preferences
 - Nearly optimal regret guarantee is provided
- Next Step: learning from strategic learning agents?
 - They can be cooperating or competing with each other
 - They might share distinct objectives

BanditLib: https://github.com/HCDM/BanditLib

Summary 13