Private optimization in the interpolation regime: faster rates and hardness results

Hilal Asi*

Karan Chadha*

Gary Cheng*

John Duchi

Stanford University

ICML 2022

Differential Privacy Definition

A mechanism M is (ε, δ) -differentially private if for every set S and for every pair of datasets x, x' differing by one entry

$$\mathbb{P}(M(x) \in S) \le e^{\varepsilon} \mathbb{P}(M(x') \in S) + \delta.$$

minimize
$$f(x) = \mathbb{E}_P[F(x;S)]$$

subject to $x \in \mathcal{X}$

- $ightharpoonup F(\cdot;s)$ is a convex loss function, $L ext{-Lipschitz}$ and $H ext{-smooth}$
- $lacksymbol{\mathcal{X}}\subset\mathbb{R}^d$ is the parameter space (diameter D)

minimize
$$f(x) = \mathbb{E}_P[F(x;S)]$$

subject to $x \in \mathcal{X}$

- $ightharpoonup F(\cdot;s)$ is a convex loss function, $L ext{-Lipschitz}$ and $H ext{-smooth}$
- $ightharpoonup \mathcal{X} \subset \mathbb{R}^d$ is the parameter space (diameter D)

A lot of work studying SCO & DP-SCO [Bassily et al. 20, Feldman et al. 21]

minimize
$$f(x) = \mathbb{E}_P[F(x;S)]$$

subject to $x \in \mathcal{X}$

- $ightharpoonup F(\cdot;s)$ is a convex loss function, $L ext{-Lipschitz}$ and $H ext{-smooth}$
- $lacksymbol{\mathcal{X}}\subset\mathbb{R}^d$ is the parameter space (diameter D)

A lot of work studying SCO & DP-SCO [Bassily et al. 20, Feldman et al. 21]

lackbox Optimal rates without privacy $O\left(\frac{LD}{\sqrt{n}}\right)$

minimize
$$f(x) = \mathbb{E}_P[F(x;S)]$$

subject to $x \in \mathcal{X}$

- $ightharpoonup F(\cdot;s)$ is a convex loss function, $L ext{-Lipschitz}$ and $H ext{-smooth}$
- $lacksymbol{\mathcal{X}}\subset\mathbb{R}^d$ is the parameter space (diameter D)

A lot of work studying SCO & DP-SCO [Bassily et al. 20, Feldman et al. 21]

- ▶ Optimal rates without privacy $O\left(\frac{LD}{\sqrt{n}}\right)$
- ▶ Optimal rates with privacy $LD \cdot O\left(\frac{1}{\sqrt{n}} + \frac{d}{n\varepsilon}\right)$ [Feldman et al. 20, Asi et al. 21]

minimize
$$f(x) = \mathbb{E}_P[F(x;S)]$$

subject to $x \in \mathcal{X}$

- $ightharpoonup F(\cdot;s)$ is a convex loss function, L-Lipschitz and H-smooth
- $lacksymbol{\mathcal{X}}\subset\mathbb{R}^d$ is the parameter space (diameter D)

A lot of work studying SCO & DP-SCO [Bassily et al. 20, Feldman et al. 21]

- lackbox Optimal rates without privacy $O\left(\frac{LD}{\sqrt{n}}\right)$
- ▶ Optimal rates with privacy $LD \cdot O\left(\frac{1}{\sqrt{n}} + \frac{d}{n\varepsilon}\right)$ [Feldman et al. 20, Asi et al. 21]

Privacy comes at a price in SCO!

Can we identify problems where we can get faster rates?

Can we identify problems where we can get faster rates?

We consider Interpolation Problems: problems where sample functions share a common minimizer.

Can we identify problems where we can get faster rates?

We consider Interpolation Problems: problems where sample functions share a common minimizer.

Definition (Interpolation Problem)

An interpolation problem is one where there exists x^* such that $\nabla F(x^*;s_i)=0$ for all $i\in[n]$.

Problem statement summary

Given $S_1^n \stackrel{\mathrm{iid}}{\sim} P$, develop private algorithms that solve

minimize
$$f(x) = \mathbb{E}_P[F(x;S)]$$

subject to $x \in \mathcal{X}$

Problem statement summary

Given $S_1^n \stackrel{\text{iid}}{\sim} P$, develop private algorithms that solve

minimize
$$f(x) = \mathbb{E}_P[F(x;S)]$$

subject to $x \in \mathcal{X}$

Non-private optimization: rates of convergence improve from $\frac{1}{\sqrt{n}}$ to $\frac{1}{n}$

Problem statement summary

Given $S_1^n \stackrel{\text{iid}}{\sim} P$, develop private algorithms that solve

minimize
$$f(x) = \mathbb{E}_P[F(x;S)]$$

subject to $x \in \mathcal{X}$

Non-private optimization: rates of convergence improve from $\frac{1}{\sqrt{n}}$ to $\frac{1}{n}$

Similar improvments in private optimization?

- 1. Interpolation does not help without additional assumptions
 - Cannot improve privacy cost in general

- 1. Interpolation does not help without additional assumptions
 - Cannot improve privacy cost in general
- 2. Faster rates under quadratic growth

- 1. Interpolation does not help without additional assumptions
 - ► Cannot improve privacy cost in general
- 2. Faster rates under quadratic growth
 - **Sample** size to achieve error α :

Non-interpolation:
$$\frac{d}{\varepsilon\sqrt{\alpha}}$$
 Interpolation: $\sim \frac{1}{\alpha^{\rho}} + \frac{d}{\rho\varepsilon}\log\left(\frac{1}{\alpha}\right)$

6/7

- 1. Interpolation does not help without additional assumptions
 - ► Cannot improve privacy cost in general
- 2. Faster rates under quadratic growth
 - Sample size to achieve error α :

Non-interpolation:
$$\frac{d}{\varepsilon\sqrt{\alpha}}$$
 Interpolation: $\sim \frac{1}{\alpha^{\rho}} + \frac{d}{\rho\varepsilon}\log\left(\frac{1}{\alpha}\right)$

- 3. Algorithms that adapt to interpolation
 - Achieve faster rates for interpolation problems while retaining optimal rates for non-interpolation problems

- 1. Interpolation does not help without additional assumptions
 - ► Cannot improve privacy cost in general
- 2. Faster rates under quadratic growth
 - Sample size to achieve error α :

Non-interpolation:
$$\frac{d}{\varepsilon\sqrt{\alpha}}$$
 Interpolation: $\sim \frac{1}{\alpha^{\rho}} + \frac{d}{\rho\varepsilon}\log\left(\frac{1}{\alpha}\right)$

- 3. Algorithms that adapt to interpolation
 - Achieve faster rates for interpolation problems while retaining optimal rates for non-interpolation problems
- 4. Optimality and the price of adaptivity

Please visit our poster #1011 tonight to learn more!

Please visit our poster #1011 tonight to learn more!

Thank you!