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Differential Privacy Definition

▶ A mechanism M is (ε, δ)-differentially private if for every set S and
for every pair of datasets x, x′ differing by one entry

P (M(x) ∈ S) ≤ eεP
(
M(x′) ∈ S

)
+ δ.
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Differentially Private Stochastic Convex Optimization

minimize f(x) = EP [F (x;S)]

subject to x ∈ X

▶ F (·; s) is a convex loss function, L-Lipschitz and H-smooth

▶ X ⊂ Rd is the parameter space (diameter D)

A lot of work studying SCO & DP-SCO [Bassily et al. 20, Feldman et al. 21]

▶ Optimal rates without privacy O
(
LD√
n

)
▶ Optimal rates with privacy LD ·O

(
1√
n
+ d

nε

)
[Feldman et al. 20, Asi

et al. 21]

Privacy comes at a price in SCO!
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Can we identify problems where we can get faster rates?

We consider Interpolation Problems: problems where sample functions
share a common minimizer.

Definition (Interpolation Problem)

An interpolation problem is one where there exists x⋆ such that
∇F (x⋆; si) = 0 for all i ∈ [n].
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Problem statement summary

Given Sn
1

iid∼ P , develop private algorithms that solve

minimize f(x) = EP [F (x;S)]

subject to x ∈ X

Non-private optimization: rates of convergence improve from 1√
n
to 1

n

Similar improvments in private optimization?
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Contributions

1. Interpolation does not help without additional assumptions
▶ Cannot improve privacy cost in general

2. Faster rates under quadratic growth
▶ Sample size to achieve error α:

Non-interpolation: d
ε
√
α

Interpolation: ∼ 1
αρ + d

ρε log
(
1
α

)
3. Algorithms that adapt to interpolation

▶ Achieve faster rates for interpolation problems while retaining optimal
rates for non-interpolation problems

4. Optimality and the price of adaptivity
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Please visit our poster #1011 tonight to learn more!

Thank you!
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