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Context: leverage

Leverage in regression: minx ∥Ax − y∥2F .
Useful to detect outliers.

Leverage in the column subset selection problem (CSSP):

min
C

∥A− CC+A∥2F , where C consists of k columns of A.

Useful to pick columns for the CSSP.
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Use of leverage in the CSSP

Boutsidis et al. (2009).
Sample columns of A w.p. essentially proportional to leverage and refine.

∥A− CC+A∥2F ≤ O(k2 log k)∥A− Ak∥2F ,

where Ak is the best rank-k approximation.



Use of leverage in the CSSP

Papailiopoulos et al. (2014).

Sort columns by ℓ
(k)
i and pick r leading ones, so that

∑r
i=0 ℓ

(k)
i (A) ≥ k − ϵ.

∥A− CC+A∥2F ≤ (1 + 2ϵ)∥A− Ak∥2F ,

where Ak is the best rank-k approximation.

If ℓ
(k)
i are concentrated, few columns provide good approx.



Generalized column subset selection

Generalized column subset selection (GCSS).
We are given A,B.

min
C

∥B − CC+B∥2F , where C consists of k columns of A.

Equivalently,

max
C

∥CC+B∥2F .

Leverage-score sampling not applicable: e.g. it may be that Vk ∈ ker(B).

Question

Can we extend leverage-based techniques for GCSS?



Generalized leverage scores and geometric bounds

Result #1

Consider a matrix A ∈ Rm×n and its singular value decomposition A = UΣV T .
Consider a column sampling matrix S ∈ Rn×r and write C = AS . Then

∥CC+Uk∥2F ≥ ∥V T
k S∥2F .

Result #2

Consider a matrix A and its singular value decomposition A = UΣV T ∈ Rm×n.
Consider an arbitrary index set R and a column sampling matrix S ∈ Rn×r satisfying

∥V T
R S∥2F ≥ |R| − ϵσ2

µ

2σ2
ω
, and write C = AS . Then

∥CC+UR∥2F ≥ ∥V T
R S∥2F − ϵ

where σω = maxi /∈R σi (A) and σµ = mini∈R σi (A).
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Leverage scores.
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Application to GCSS

Deterministic generalized leverage score sampling for GCSS

Let C = AS , where S is the matrix output by deterministic GLS sampling. Then

∥CC+B∥2F ≥ (1− ϵ)(1− δ)∥B∥2F .

If ℓ
(k)
i are concentrated, few columns suffice (off from Papailiopoulos et al. (2014) by

σ2
ω/σ

2
µ).
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Experiments

Experimental results:

▶ Greedy algorithm better alternative overall.

▶ Our approach outperforms it in some cases.



Thanks!
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