Modular Conformal Calibration

Charlie Marx*

Joint work with:

*Equal contribution

Shengjia Zhao* Willie Neiswanger Stefano Ermon



Why Quantify Uncertainty?

* Calibrate trust
* Enable efficient human oversight

* Improve performance in downstream tasks



Uncertainty Quantification: Two Perspectives
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Uncertainty Quantification: Two Perspectives

Conformal Prediction: turn any Recalibration: adjust any distribution
predictor into a set predictor with predictor to satisfy calibration
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Our Work

* Transform an arbitrary regressor into a calibrated distribution predictor
* Achieve € calibration error with O(1/€) samples

* Unify conformal prediction and recalibration
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A Modular Design

Base Predictor Calibration Score Interpolation Algorithm
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Abstract

Uncertainty estimates must be calibrated (i.e., ac-
curate) and sharp (i.e., informative) in order to be
useful. This has motivated a variety of methods
for recalibration, which use held-out data to turn
an uncalibrated model into a calibrated model.
However, the applicability of existing methods is
limited due to their assumption that the original
model is also a probabilistic model. We intro-
duce a versatile class of algorithms for recalibra-
tion in regression that we call modular confor-
mal calibration (MCC). This framework allows
one to transform any regression model into a cal-
ibrated probabilistic model. The modular design
of MCC allows us to make simple adjustments
to existing algorithms that enable well-behaved
distribution predictions. We also provide finite-
sample calibration guarantees for MCC algo-
rithms. Our framework recovers isotonic recali-
bration, conformal calibration, and conformal in-
terval prediction, implying that our theoretical re-
sults apply to those methods as well. Finally, we
conduct an empirical study of MCC on 17 regres-
sion datasets. Our results show that new algo-
rithms designed in our framework achieve near-
perfect calibration and improve sharpness rela-
tive to existing methods.

1. Introduction

Uncertainty estimates can inform human decisions (Pratt
et al.,, 1995; Berger, 2013), flag when an automated de-
cision system requires human review (Kang et al., 2021),
and serve as an internal component of automated systems.
For example, uncertainty informs treatment decisions in
medicine (Begoli et al.,, 2019) and supports safety in au-
tonomous navigation (Michelmore et al., 2018). In such
settings, the benefits of accounting for uncertainty hinge on
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our ability to produce calibrated uncertainty estimates—
e.g., of those events to which one assigns a probability of
90%, the events should indeed occur 90% of the time. A
model that is not calibrated can consistently make confident
predictions that are incorrect.

Many models, such as neural networks (Guo et al., 2017)
and Gaussian processes (Rasmussen, 2003; Tran et al.,
2019), achieve high accuracy but have poorly calibrated or
absent uncertainty estimates. In other cases, a pretrained
model is released for wide use and it is difficult to guaran-
tee that it will produce calibrated uncertainty estimates in
new settings (Zhao et al., 2021). This leads us to the ques-
tion: how can we safely deploy models with high predictive
value but poor or absent uncertainty estimates?

These challenges have motivated work on recalibration,
whereby a model with poor uncertainty estimates is trans-
formed into a probabilistic model that outputs calibrated
probabilities (Kuleshov et al., 2018; Vovk et al., 2020;
Niculescu-Mizil & Caruana, 2005; Chung et al., 2021). Re-
calibration methods are attractive because they require only
black-box access to a given model and can return well-
calibrated probabilistic predictions.

However, calibration is not the only goal of probabilistic
models. It is also important for a probabilistic model to pre-
dict sharp (i.e., low variance) distributions to convey more
information. Furthermore, recalibration methods need to
be data efficient to calibrate models in data poor regimes.

In this paper, we introduce modular conformal calibration
(MCC), a class of algorithms that unifies existing recali-
bration methods and gives well-behaved distribution pre-
dictions from any model. Our main contributions are:

1. We introduce modular conformal calibration, a class
of algorithms for recalibration in regression, which
can be applied to recalibrate almost any regression
model. MCC unifies isotonic calibration (Kuleshov
et al., 2018), conformal calibration (Vovk et al., 2020),
and conformal interval prediction (Vovk et al., 2005)
under a single theoretical framework, and additionally
leads to new algorithms.

2. We provide finite-sample calibration guarantees, show-
ing that MCC can achieve € calibration error with
O(1/€) samples. These results also apply to the afore-
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