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Task Introduction

Graph anomaly detection aims to identify abnormal graph objects that deviate significantly

from the majority, e.g, identifying fraudsters in a transaction network. [1]
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[1] Ma et al. A comprehensive survey on graph anomaly detection with deep learning. TKDE'21.



Motivation

« Graph Neural Networks (GNNSs) are widely used for this task.

« Existing methods analyze the anomaly detection from the graph spatial
domain. There are few works that address this problem from the spectral

domain.
* The spectral filter determines the expressive power of GNN [1].

Spatial GNN HTY = upd (go(H ), agg (91 (HY)) :ueN (U)))
Spectral GNN go(L) * x = Ug}(A)U "x,

[1] Balcilar et al. Analyzing the expressive power of graph neural networks in a spectral perspective. ICLR’21



Motivation

« Graph Neural Networks (GNNSs) are widely used for this task.

« Existing methods analyze the anomaly detection from the graph spatial
domain. There are few works that address this problem from the spectral

domain.
* The spectral filter determines the expressive power of GNN [1].

How to choose a tailored spectral filter in
GNN for anomaly detection?

* We take the first step towards analyzing anomalies via the lens of the
graph spectrum (i.e., after the graph Fourier transform of node attributes).



Key Observation

The existence of anomalies leads to the ‘right-shift’ of spectral energy,
which means the spectral energy distribution concentrates less in low
frequencies and more in high frequencies.




Theoretical Contribution

The existence of anomalies leads to the ‘right-shift’ of spectral energy,
which means the spectral energy distribution concentrates less in low
frequencies and more in high frequencies.

We prove it on a Gaussian anomaly model in a rigorous manner:

Proposition 2. If || # 0 and L = D - A, the expectation of
the inverse of low-frequency energy ratio £, [1/n;(x, L) |
is monotonically increasing with the anomaly degree o [|4|.



Spectral Analysis of Graph Anomaly

Anomalies in
the graph
spatial domain
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Spectral Analysis of Graph Anomaly
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Spectral Analysis of Graph Anomaly
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Validation on Real-world Anomalies
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Figure 3. Comparison of the spectral energy distribution (left) and
the energy ratio curve (right) between the original graph and two
perturbed graphs in the Amazon dataset.



Methodology

The analysis of graph anomaly shows that we need to focus on ‘right-shift’
effect when detecting graph anomalies.

Unfortunately, most of the current GNNs are low-pass filters or adaptive
filters that are neither guaranteed to be band-pass nor spectral-localized.

We propose our new graph neural network architecture based on

Hammond's graph wavelet theory[1], which is band-pass in nature and
can better address the right-shift' effect inheriting from anomalies.

[1] Hammond et al. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis.



Beta Wavelet

A group of (' +1 Beta wavelets with the same order:

(W — ((WO,Ca (Wl,c—la e (WC,O)
(b - by
2B(p+ 1,9+ 1)

|

Derived From Beta distribution

5 (w) = { B(pﬁ’qﬂ)wp(l —w)9 if we[0,1]
p,g\W) =

Wpq =UBp (MU' =B (L) =

0 otherwise



Good Properties of Beta Kernel

Compared with the widely
used Heat kernel [1], Beta
kernel has the following good
properties:

« Band-pass and spectral-
localized filters
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[1] Xu et al. Graph wavelet neural network. ICLR’19
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Good Properties of Beta Kernel

Heat kernels Heat Wavelet

Compared with the widely & =1 A=)
used Heat kernel [1], Beta L = ¥ ¥
kernel has the following good ~ 06 =10 X |
properties: D041 " g
0.2 O ‘ ?
« Band-pass and spectral- - 74t :
localized filters 00 05 1}?\0 15 2.0 \
- Spatial locality e KT Bf;i ;""aq"fll"it
— p=0, q=4
« Support fast computation A — o2 o
~ 157 — p=3,q=1
Oi.0
0.5
0.0 1 0

00 05 1.0 15 2.0
A (a)

[1] Xu et al. Graph wavelet neural network. ICLR’19
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Beta Wavelet Graph Neural Network (BWGNN)

A group of (' +1 Beta wavelets with the same order:

(W — ((WO,Ca (Wl,c—la e (WC,O)
(b - by
2B(p+ 1,9+ 1)

Wpq =UBp (MU' =B (L) =

Beta Wavelet Graph Neural Network:

Feed input X to different

Zi = Wi,C—i(MLP(X)) wavelets in parallel
I AGG( [Z(), Zl, s Zc]) —> Aggregate all filtering results



Datasets

Statistics
Dataset | # Nodes # Edges Anomaly(%) # Features
Amazon 11,944 4,398,392 6.87% 25
YelpChi 45,954 3,846,979 14.53% 32
T-Finance 39,357 21.,222.543 4.58% 10
T-Social | 5,781,065 73,105,508 3.01% 10

Table 1. Summary of dataset statistics



Results on YelpChi and Amazon

Table 4. Experimental results (Mean + Std.) of compared methods on the YelpChi and Amazon datasets with 1% and 40% training ratios.

Dataset YelpChi (1%) YelpChi (40%) Amazon (1%) Amazon (40%)
Metric | Fl-macro AUC Fl-macro AUC Fl-macro AUC Fl-macro AUC

MLP | 53.90+0.23 59.83+040 | 57.57+0.89 66.52+1.09 | 74.68+1.25 83.62+1.76 | 79.17+1.26 89.80+1.04
SVM | 60.47+024 62.92+0.92 | 70.77+0.01 70.37+0.04 | 83.49+1.39 81.62+3.53 | 90.71+0.04 90.51+0.07
GCN | 52.48+0.50  54.06+0.72 | 54.31+0.77 56.51+1.09 | 67.93+1.42 82.85+0.71 | 67.47+0.52 83.49+047
ChebyNet | 63.13+0.50  73.48+0.74 | 65.72+0.48 78.19+0.63 | 85.74+1.67 87.60+0.61 | 91.94+0.29 94.64+0.53
GAT | 50.27+231  50.95+1.39 | 54.64+2.19 57.20+0.24 | 60.84+2.47 73.45+1.26 | 83.1842.91 89.90+0.95
GIN | 57.57+1.15 64.73+1.73 | 62.85+0.76 74.09+1.06 | 68.69+4.12 78.83+3.82 | 69.26+245 80.56+2.99
GraphSAGE | 58.41+2.12  67.58+1.69 | 65.49+1.84 78.31+2.14 | 70.78+3.85 75.37+249 | 74.17+1.37 86.95+2.74
GWNN | 59.10+6.53 67.16+11.44 | 65.29+6.67 75.32+897 | 87.01+198 85.37+2.32 | 91.00+0.27 93.194+2.22
GraphConsis | 56.79+2.72  66.41+3.41 58.704+£2.00 69.83+3.02 | 68.59+3.41 74.11+3.53 | 75.12+43.25 87.41+3.34
CAREGNN | 62.18+1.39  75.0743.88 | 63.32+0.94 76.19+2.92 | 68.78+1.68 88.69+3.58 | 86.39+1.73 90.53+1.67
PC-GNN | 59.82+142  75.47+098 | 63.00+2.30 79.87+0.14 | 79.86+5.65 90.40+2.05 | 89.56+0.77 95.86+0.14
BWGNN (Homo) | 61.15+041  72.01+0.48 | 71.00+0.91 84.03+0.98 | 90.92+0.78 89.45+0.33 | 92.29+0.44 98.06+0.45
BWGNN (Hetero) | 67.02+0.50 76.95+1.38 | 76.96+0.89 90.54+0.49 | 83.834+3.79 86.59+2.62 | 91.72+0.84 97.42+0.48




Results on T-Finance and T-Social

Table 3. Experimental results and the overall training time (seconds) on the T-Finance and T-Social datasets with different training ratios.

Dataset T-Finance (1%) T-Finance (40%) T-Social (0.01%) T-Social (40%)
Metric | Fl-macro AUC | Fl-macro AUC Time Fl-macro AUC | Fl-macro AUC Time

MLP 61.00 82.93 70.57 87.15 13.32 50.03 56.35 50.35 56.96 986
SVM 67.69 71.47 76.23 78.16  145.11 57.69 50.06 - - >1 day

GCN 54.11 57.30 70.74 64.43 2398 49.23 59.04 59.88 87.35 1294
ChebyNet 77.20 85.53 80.81 88.45 26.13 52.59 70.02 64.77 85.52 1711
GAT 53.15 52.04 53.86 73.00 181.62 46.25 44.35 69.01 89.06 1596

GIN 58.25 68.86 65.23 80.02  32.39 58.32 70.61 61.74 79.72 2195
GraphSAGE 59.03 66.35 52.71 67.12 3591 57.91 59.69 59.77 70.80 2230
GWNN 70.64 86.68 71.58 86.57 ;’%S 50.81 56.14 58.72 73.77 ;9_9%

GraphConsis T1.73 90.28 73.46 91.42 264.4\ 52.45 65.29 56.55 71.25 /3495
CAREGNN 73.32 90.50 77.55 92.16 | 572.41 55.82 71.20 56.26 71.86 | 9159
PC-GNN 62.06 90.76 63.18 91.23 | 736.55 51.14 59.84 52.17 68.45 | 13958

BWGNN | 8489 91.15| 8687  94.35 \31.9y 7593  88.06 | 8398  95.20 v'xm/




Conclusion

We presents a novel analysis of graph anomalies in the spectral domain.

We find that graph anomalies lead to the ‘right-shift' phenomenon of spectral
energy distributions

We propose Beta Wavelet Graph Neural network (BWGNN) to better capture
anomaly information on graph.

Our code and data are available at
https://github.com/squareRoot3/Rethinking-Anomaly-Detection

Feel free to contact me via email (jtangbf@connect.ust.hk) or GitHub. :



https://github.com/squareRoot3/Rethinking-Anomaly-Detection

