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Spectral Clustering
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Input: Graph G, number of clusters k.

1. Find k eigenvectors of the graph Laplacian matrix.

2. Embed vertices into Rk according to eigenvectors.

3. Perform k-means clustering in Rk.

SPECTRAL CLUSTERING ALGORITHM
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Why Does Spectral Clustering Work?

−→

B1 0 0
0 B2 0
0 0 B3

 −→

Graph G Laplacian LG Spectral Embedding

1. Suppose k clusters are disconnected.

2. Then, Laplacian matrix is block-diagonal.

3. First k eigenvectors are indicator vectors of clusters.

4. If small number of edges are added, eigenvectors don’t change too much.

INTUITION
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We prove, for well-clustered graphs, that

1. there is a close connection between the indicator vectors of the clusters,
and the Laplacian eigenvectors;

2. there is an upper bound on the number of vertices misclassified by the
spectral clustering algorithm.

Both results significantly tighten the analysis by Peng, Sun, and Zanetti [SICOMP’17].

OUR RESULTS
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Graphs with Inter-Cluster Structure

In many graphs, cluster similarity is not symmetric.

Can this be used to improve the performance of spectral clustering?
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Meta-Graphs

Graph G
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Meta-Graphs

Graph G ‘Meta-Graph’ M

A Tighter Analysis of Spectral Clustering, and Beyond Peter Macgregor & He Sun 5



Meta-Graphs

Graph G ‘Meta-Graph’ M
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Meta-Graphs

Graph G
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Spectral Clustering with Meta-Graphs
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We prove

1. a close connection between the spectral embedding of the meta-graph M,
and the eigenvectors of the Laplacian LG;

2. if the meta-graph vertices are well-separated with ℓ < k eigenvectors,
spectral clustering with ℓ eigenvectors performs well;

3. for graphs with certain structures, spectral clustering with ℓ < k

eigenvectors performs better than spectral clustering with k eigenvectors.

OUR RESULTS
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Experimental Results - MNIST and USPS
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Experimental Results - BSDS

(a) Original Image (b) 6 clusters found with 3
vectors

(c) 6 clusters found with 6
vectors

(d) Original Image (e) 45 clusters found with 7
vectors

(f) 45 clusters found with 45
vectors

Using k eigenvectors on all 500 images in the dataset gives an average Rand
Index of 0.71. Using k/2 eigenvectors gives an average of 0.74.
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Summary

A tighter analysis of the classical spectral clustering algorithm.

Clustering structured graphs with fewer than k eigenvectors.

Experimental evaluation of spectral clustering with fewer than k eigenvectors.
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