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Transformer and Self-Attention

Self-attention transforms sequences X := [xg, ..., xn] T € RVNXDx ysing
Wo, Wy € RPXPx and Wy, € RPv*Px as follows:
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Self-Attention: The Current Problems

A good understanding of the self-attention mechanism is missing.

Transformers for practical tasks learn redundant heads, limiting their representation
capacity while wasting parameters, memory and computation



Self-attention from a Probabilistic Perspective



Gaussian Mixture Model for Self-Attention

Consider a query g; € Q and a key k; € K. Let t be a K-dimensional binary random
variable having 1-of-K representation. Our GMM s defined as follows

N
p(q) =>_mN(q|k;,o71) (1)
Jj=1

where m; is the prior p(tj = 1).

In our mixture model, each key k; is the cluster mean. The query data q; is assigned
to those clusters.



Attention Score as a Posterior Distribution

miN(qi | kj, 07)

p(ty = 1lg;) =
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myexp | = (lail + llig11%) /207 exp (aik/o2)
S mpexp | = (laill? + Ik 1) /203 | exp (k] /o)

Assuming that g; and k; are normalized, uniform priors, and aj2 = 02, the posterior
becomes

exp (q,-kf/02)
> exp (q/k]/ 02)

ajj is the attention score deciding how much the token at location / attends to the
token at location J.

p(tj = 1lq;) = = ajj. (2)

Attention score in self-attention is secretly a posterior.



Attention with a Mixture of Gaussian Keys

We model each key k; as a mixture of M Gaussians N(kjr,ajzrl), r=1,..., M. The
Mixture of Gaussian Keys (MGK) is defined as

plailty =1) =Y meN(ai| kir, o7,1). (3)

Then the posterior is given by

S, T exp (—||qi - kjr||2/20]2r)
p(ti = 1lq;) = 2/952 ) @
S P

MGK uses multiple M keys at each position j
and allows the number of head to be reduced by M times.



Mixture of Keys: Approximation Guarantee

Theorem

Assume that P is probability distribution on [—a, a]? for some a > 0 and admits
density function p such that p is differentiable and bounded. Then, for any given
variance o > 0 and for any € > 0, there exists a mixture of K components

Z,-K:l TN (8, 0°1) where K < (Clog(1/€))? for some universal constant C such that

K
sup |p(x) = > mig(x|6;, a?1)| <e,

d :
X€ER i=1

where ¢(x|6, a?1) is the density function of multivariate Gaussian distribution with
mean @ and covariance matrix o°l.

MGK can approximate any distribution of the queries.



Inference and Learning
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This M-step can be replaced by a generalized M-step that takes the advantage of
SGD and backpropagation



Attention with a Mixture of Linear Keys

Output of attention with a Mixture of Gaussian Keys (MGK)
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Output of attention with a Mixture of Linear Keys (MLK)
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MLK increases the capacity of linear attention while maintaining the linear
complexity of O(N).
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Generalization on Large Scale Tasks

Language Modeling Machine Translation
Method Valid PPL  Test PPL Method BLEU score
Softmax 8 heads (small) 33.15 3429 %frfffgéﬁl gregﬁGK > head gig
MGK 4 heads (small) 33.28 34.21 St .
sSMGK 8 heads (small) 32.92 33.99 Tranformer MGR 2 head 3434
MGK 8 heads (small) 32.74 33.93
Softmax 4 heads (small) 34.80 35.85
Linear 8 heads (small) 38.07 39.08
MLK 4 heads (small) 38.49 39.46
MLK 8 heads (small) 37.78 38.99
Linear 4 heads (small) 39.32 40.17
Softmax 8 heads (medium) 27.90 29.60
MGK 4 heads (medium) 27.58 28.86

MGK/MLK still has advantage over softmax/linear attention in large-scale

tasks. n



Efficiency Analysis
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The advantage in efficiency of MGK/MLK grows
with the sequence length and the model size.
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Redundancy Reduction

Attention Matrices at Each Head Rank Distribution of Attention Matrices

Softmax 4 Heads MGK 4 Heads MGK 2 Heads Softmax 4 Heads MGK 4 Heads MGK 2 Heads
layer 1 layer 2 layer 1 layer 2 layer 1 layer 2 1000 1000 1000
1
25K 25K -
500 500 500 2
1K 25K 4K K K 4
1
2K 25K ob— P S T
- 000 2000 3000 4000 000 2000 3000 4000 1000 2000 3000 4000
5
1K 25K ak k. I 25Kk 4K 8§ o 1000 1000
1]
25K 25k o
500 500 500 3
I 2k ak K KA g
5 g g
®
25k 2.5k 0 1000 2000 3000 4000 ° 1000 2000 3000 4000 ° 1000 2000 3000 4000
a
i £ Rank

MGK attention has more representation capacity and is able to capture more
diverse attention patterns than softmax attention.
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Conclusions

We construct a Gaussian mixture model underlying the self-attention
mechanism.

We show that the attention score in the attention matrix corresponds to a posterior
distribution in our mixture model.

Using our model, we propose a new attention mechanism that uses a mixture of
Gaussian and linear keys to increase the efficiency and reduces the redundancy in
multi-head self-attention.

Current/Future Work: Understanding transformers via nonparametric regression
and the applications of the Fourier integral attention.

Tan M Nguyen, Minh Pham, Tam Nguyen, Khai Nguyen, Stanley J. Osher, Nhat Ho. “Transformer with Fourier Integral Attentions”.
arXiv:2206.00206, 2022.
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