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Transformer and Self-Attention

Self-attention transforms sequences X := [x1, . . . , xN ]⊤ ∈ RN×Dx using
WQ,WK ∈ RD×Dx and WV ∈ RDv×Dx as follows:

Q = XW>
Q

K = XW>
K

V = XW>
V

H = softmax
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Self-Attention: The Current Problems

A good understanding of the self-attention mechanism is missing.

Transformers for practical tasks learn redundant heads, limiting their representation
capacity while wasting parameters, memory and computation
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Self-attention from a Probabilistic Perspective



Gaussian Mixture Model for Self-Attention

Consider a query qi ∈ Q and a key kj ∈ K. Let t be a K-dimensional binary random
variable having 1-of-K representation. Our GMM is defined as follows

p(q) =

N∑

j=1

πjN(q | kj , σ2j I) (1)

where πj is the prior p(tj = 1).

In our mixture model, each key kj is the cluster mean. The query data qi is assigned
to those clusters.
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Attention Score as a Posterior Distribution

p(tj = 1|qi) =
πjN(qi | kj , σ2j )∑
j ′ πj ′N(qi | kj ′ , σ2j ′)

=
πj exp

[
−
(
∥qi∥2 + ∥kj∥2

)
/2σ2j

]
exp

(
qik
⊤
j /σ

2
j

)

∑
j ′ πj ′ exp

[
−
(
∥qi∥2 + ∥kj ′∥2

)
/2σ2j ′

]
exp

(
qik
⊤
j ′ /σ

2
j ′

) .

Assuming that qi and kj are normalized, uniform priors, and σ2j = σ
2, the posterior

becomes

p(tj = 1|qi) =
exp

(
qik
⊤
j /σ

2
)

∑
j ′ exp

(
qik
⊤
j ′ /σ

2
) = ai j . (2)

ai j is the attention score deciding how much the token at location i attends to the
token at location j .

Attention score in self-attention is secretly a posterior.
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Attention with a Mixture of Gaussian Keys

We model each key kj as a mixture of M Gaussians N(kjr , σ2jr I), r = 1, . . . ,M. The
Mixture of Gaussian Keys (MGK) is defined as

p(qi |tj = 1) =
∑

r

πjrN (qi | kjr , σ2jr I). (3)

Then the posterior is given by

p(tj = 1|qi) =

∑
r πjr exp

(
−∥qi − kjr∥2/2σ2jr

)

∑
j ′
∑
r πj ′r exp

(
−∥qi − kj ′r∥2/2σ2j ′r

) . (4)

MGK uses multiple M keys at each position j
and allows the number of head to be reduced by M times.
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Mixture of Keys: Approximation Guarantee

Theorem
Assume that P is probability distribution on [−a, a]d for some a > 0 and admits
density function p such that p is differentiable and bounded. Then, for any given
variance σ > 0 and for any ϵ > 0, there exists a mixture of K components∑K
i=1 πiN (θi , σ2I) where K ≤ (C log(1/ϵ))d for some universal constant C such that

sup
x∈Rd

|p(x)−
K∑

i=1

πiφ(x |θi , σ2I)| ≤ ϵ,

where φ(x |θ, σ2I) is the density function of multivariate Gaussian distribution with
mean θ and covariance matrix σ2I.

MGK can approximate any distribution of the queries.
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Inference and Learning

Soft E-step

γi r =
πjr exp

(
−∥qi − kjr∥2/2σ2jr

)

∑
r ′ πjr ′ exp

(
−∥qi − kjr ′∥2/2σ2jr ′

) , Njr =
N∑

i=1

γi r , πjr =
Njr
N
.

Hard E-step

p(tj = 1|qi) =
maxr exp

(
−∥qi − kjr∥2/2σ2jr

)

∑
j ′ maxr exp

(
−∥qi − kj ′r∥2/2σ2j ′r

) .

M-step

knewjr =
1

Njr

N∑

i=1

γi rqi , σ
2 new
jr =

1

Njr

N∑

i=1

γi r (qi − knewjr )⊤(qi − knewjr ).

This M-step can be replaced by a generalized M-step that takes the advantage of
SGD and backpropagation
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Attention with a Mixture of Linear Keys

Output of attention with a Mixture of Gaussian Keys (MGK)

hi =
∑

j




∑
r πjr exp

(
−∥qi − kjr∥2/2σ2jr

)

∑
j ′
∑
r πj ′r exp

(
−∥qi − kj ′r∥2/2σ2j ′r

)


 vj .

Output of attention with a Mixture of Linear Keys (MLK)

hi =

∑
j

∑
r πjrφ(qi)

⊤φ(kjr )vj∑
j

∑
r πjrφ(qi)

⊤φ(kjr )

=
φ(qi)

⊤∑
j

∑
r πjrφ(kjr )v

⊤
j

φ(qi)⊤
∑
j

∑
r πjrφ(kjr )

.

MLK increases the capacity of linear attention while maintaining the linear
complexity of O(N).
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Generalization on Large Scale TasksScaling Up

MGK/MLK still has advantage over softmax/linear attention in large-scale tasks
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Improving Transformers with Probabilistic Attention Keys

Figure 1. Training loss and test accuracy of Transformer-MGK/MLK vs. softmax/linear transformer on the retrieval task, which has the
longest average sequence-length and attention span among the LRA tasks (Tay et al., 2021). The impressive performance of Transformer-
MGK/MLK on this challenging task validates the capability of our models to capture long-range dependencies via learning a diversity of
attention patterns.

follow the setting for small/medium models from (Schlag
et al., 2021).

Results As shown in Table 3, our Transformer-MGKs out-
perform the baseline softmax transformers. Even when
using half the number of attention heads (i.e., 4 vs. 8 heads
as in the baselines), the Transformer-MGK still achieves bet-
ter test perplexities (PPL) than the baseline. Adding more
heads into Transformer-MGKs improves their performance.
Similarly, Transformer-MLKs attain comparable test/valida-
tion PPL to the baseline linear transformers when using half
the number of attention heads. When using the same num-
ber of attention heads as in the baseline, Transformer-MLKs
consistently achieve better performance.Note that reducing
the number of heads from 8 to 4 in the baseline models sig-
nificantly decreases their performance with more than 1.5
reduction in test/validation PPL for the softmax transformer
and more than 1.0 reduction in test/validation PPL for the
linear transformer. Our proposed Transformer-MGK and
Transformer-MLK helps close this gap.

To further examine the scalability of our models, we ap-
ply the MGK on a stronger baseline, which is the 8-head
medium softmax transformer in (Schlag et al., 2021). This
model has 90M parameters, 16 layers, 8 attention heads
per layer, and hidden size of 256. The size of our baseline
model is close to BERTBase (Devlin et al., 2019), which has
110M parameters, 12 layers, 12 attention heads per layer,
and hidden size of 768. Applying our MGK on top of this
baseline and using only 4 heads instead of 8, we significantly
improve the test PPL from 29.60 to 28.86 while reducing
the model size and computational cost, demonstrating the
advantages of our scaled models.

3.3 Neural Machine Translation on IWSLT’14
German to English

We further examine the advantages of our methods on the
IWSLT’14 German-English machine translation task (Cet-
tolo et al., 2014). Table 4 shows that the 2-head Transformer-
MGK and sMGK models achieve the BLEU score of 34.34
and 34.69, respectively, which are comparable to and bet-
ter than the BLUE score of 34.42 of the 4-head softmax
transformer baseline.

Table 3. Perplexity (PPL) on WikiText-103 of Transformer-MGK
and MLK compared to the baselines. Both Transformer-MGK and
MLK achieve comparable or better PPL than the baselines while
using only half the number of heads. When using the same number
of heads, our models significantly improve the baselines.

Method Valid PPL Test PPL
Softmax 8 heads (small) 33.15 34.29
MGK 4 heads (small) 33.28 34.21
sMGK 8 heads (small) 32.92 33.99
MGK 8 heads (small) 32.74 33.93
Softmax 4 heads (small) 34.80 35.85
Linear 8 heads (small) 38.07 39.08
MLK 4 heads (small) 38.49 39.46
MLK 8 heads (small) 37.78 38.99
Linear 4 heads (small) 39.32 40.17
Softmax 8 heads (medium) 27.90 29.60
MGK 4 heads (medium) 27.58 28.86

Table 4. Machine translation BLEU scores of 2-head Transformer-
MGKs on the IWSLT14 De-En dataset is better than or equivalent
to that of the 4-head baseline.

Method BLEU score
Softmax 4 heads 34.42
Transformer sMGK 2 head 34.69
Transformer MGK 2 head 34.34

3.4 Empirical Analysis

We conduct empirical analysis based on the Transformer-
MGK trained for the document retrieval tasks and efficiency
analysis for the Language modeling task on WikiText-103.
Results for Transformer-MLKs and other other results for
WikiText-103 task are provided in the Appendix.

Transformer-MGK helps avoid learning redundant
heads We visually compare attention matrices learned by
Transformer-MGKs and the baseline softmax transformer
on the document retrieval task in Figure 2. In particular, we
randomly select an attention matrix at each head in each
layer and visualize that attention matrix for each model
in comparison. Figure 2(Left) shows that the queries in
Transformer-MGKs can attend to a variety of keys and
equivalently to other tokens at different positions in the
input sequence. This diversity in attention pattern helps re-
duce the chance that the model learns similar and redundant
attention matrices at different heads significantly.
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Figure 1. Training loss and test accuracy of Transformer-MGK/MLK vs. softmax/linear transformer on the retrieval task, which has the
longest average sequence-length and attention span among the LRA tasks (Tay et al., 2021). The impressive performance of Transformer-
MGK/MLK on this challenging task validates the capability of our models to capture long-range dependencies via learning a diversity of
attention patterns.

follow the setting for small/medium models from (Schlag
et al., 2021).

Results As shown in Table 3, our Transformer-MGKs out-
perform the baseline softmax transformers. Even when
using half the number of attention heads (i.e., 4 vs. 8 heads
as in the baselines), the Transformer-MGK still achieves bet-
ter test perplexities (PPL) than the baseline. Adding more
heads into Transformer-MGKs improves their performance.
Similarly, Transformer-MLKs attain comparable test/valida-
tion PPL to the baseline linear transformers when using half
the number of attention heads. When using the same num-
ber of attention heads as in the baseline, Transformer-MLKs
consistently achieve better performance.Note that reducing
the number of heads from 8 to 4 in the baseline models sig-
nificantly decreases their performance with more than 1.5
reduction in test/validation PPL for the softmax transformer
and more than 1.0 reduction in test/validation PPL for the
linear transformer. Our proposed Transformer-MGK and
Transformer-MLK helps close this gap.

To further examine the scalability of our models, we ap-
ply the MGK on a stronger baseline, which is the 8-head
medium softmax transformer in (Schlag et al., 2021). This
model has 90M parameters, 16 layers, 8 attention heads
per layer, and hidden size of 256. The size of our baseline
model is close to BERTBase (Devlin et al., 2019), which has
110M parameters, 12 layers, 12 attention heads per layer,
and hidden size of 768. Applying our MGK on top of this
baseline and using only 4 heads instead of 8, we significantly
improve the test PPL from 29.60 to 28.86 while reducing
the model size and computational cost, demonstrating the
advantages of our scaled models.

3.3 Neural Machine Translation on IWSLT’14
German to English

We further examine the advantages of our methods on the
IWSLT’14 German-English machine translation task (Cet-
tolo et al., 2014). Table 4 shows that the 2-head Transformer-
MGK and sMGK models achieve the BLEU score of 34.34
and 34.69, respectively, which are comparable to and bet-
ter than the BLUE score of 34.42 of the 4-head softmax
transformer baseline.

Table 3. Perplexity (PPL) on WikiText-103 of Transformer-MGK
and MLK compared to the baselines. Both Transformer-MGK and
MLK achieve comparable or better PPL than the baselines while
using only half the number of heads. When using the same number
of heads, our models significantly improve the baselines.

Method Valid PPL Test PPL
Softmax 8 heads (small) 33.15 34.29
MGK 4 heads (small) 33.28 34.21
sMGK 8 heads (small) 32.92 33.99
MGK 8 heads (small) 32.74 33.93
Softmax 4 heads (small) 34.80 35.85
Linear 8 heads (small) 38.07 39.08
MLK 4 heads (small) 38.49 39.46
MLK 8 heads (small) 37.78 38.99
Linear 4 heads (small) 39.32 40.17
Softmax 8 heads (medium) 27.90 29.60
MGK 4 heads (medium) 27.58 28.86

Table 4. Machine translation BLEU scores of 2-head Transformer-
MGKs on the IWSLT14 De-En dataset is better than or equivalent
to that of the 4-head baseline.

Method BLEU score
Softmax 4 heads 34.42
Transformer sMGK 2 head 34.69
Transformer MGK 2 head 34.34

3.4 Empirical Analysis

We conduct empirical analysis based on the Transformer-
MGK trained for the document retrieval tasks and efficiency
analysis for the Language modeling task on WikiText-103.
Results for Transformer-MLKs and other other results for
WikiText-103 task are provided in the Appendix.

Transformer-MGK helps avoid learning redundant
heads We visually compare attention matrices learned by
Transformer-MGKs and the baseline softmax transformer
on the document retrieval task in Figure 2. In particular, we
randomly select an attention matrix at each head in each
layer and visualize that attention matrix for each model
in comparison. Figure 2(Left) shows that the queries in
Transformer-MGKs can attend to a variety of keys and
equivalently to other tokens at different positions in the
input sequence. This diversity in attention pattern helps re-
duce the chance that the model learns similar and redundant
attention matrices at different heads significantly.

Language Modeling Machine Translation

MGK/MLK still has advantage over softmax/linear attention in large-scale
tasks. 11



Efficiency AnalysisEfficiency Analysis

The advantage in efficiency of MGK/MLK 
grows with the sequence length and the model size
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Figure 3. Training (A), Inference (B) FLOP ratios and number-of-
parameter ratio (C) between 4-head Transformer-MGK with the
8-head softmax baseline across different D model dimensions and
N sequence lengths, for the language modeling task on WikiText-
103. 4-head Transformer-MGK is significantly efficient, both in
computation and model complexity, than the baseline as D and N
increases, indicating the benefits of our method for long-range and
large-scale tasks.

Figure 4. Computational cost (FLOPs) and the number of param-
eters of Transformer-MGK vs the baseline softmax transformer
(Left) and Transformer-MLK vs. the baseline linear transformer
(Right) trained on the Retrieval task. The efficiency advantage of
Transformer-MGK/MLK over the baselines in both metrics grows
with the number of head.

2021). Among these categories are models which design
the attention matrix to have sparse structure (Parmar et al.,
2018; Liu et al., 2018; Qiu et al., 2019; Child et al., 2019;
Beltagy et al., 2020). Another category includes models that
combine two or more different access patterns to improve
the coverage (Child et al., 2019; Ho et al., 2019). Access
patterns can also be made learnable in a data-driven fash-
ion (Kitaev et al., 2020; Roy et al., 2021; Tay et al., 2020).
Other efficient transformers take advantage of a side mem-
ory module to access multiple tokens at once (Lee et al.,
2019; Sukhbaatar et al., 2019; Asai & Choi, 2020; Beltagy
et al., 2020). Finally, low-rank and kernelization approxima-
tion are utilized to enhance the memory and computational
efficiency of computing self-attention (Tsai et al., 2019;
Wang et al., 2020; Katharopoulos et al., 2020; Choromanski
et al., 2021; Shen et al., 2021; Nguyen et al., 2021; Peng
et al., 2021). In addition to the aforementioned efficient
transformers, multi-query attention that shares keys and val-
ues between different attention heads (Shazeer, 2019) has
also been studied to reduce the memory-bandwidth cost and
increase the speed for incremental transformer inference
(see Appendix A.11). Last but not least, methods such as
using auxiliary losses (Al-Rfou et al., 2019) and adaptive in-

put embedding (Baevski & Auli, 2019) have been explored
to speed up the convergence of training transformers. Our
MGK/MLK can be easily incorporated into these methods
above to further improve their accuracy and efficiency.

Redundancy in Transformers Latest works suggest that
most of the neurons and heads in the pre-trained trans-
former are redundant and can be removed when optimzing
towards a downstream task (Dalvi et al., 2020; Michel et al.,
2019; Durrani et al., 2020). Other works also study the
contextualized embeddings in pretrained networks under
this redundancy due to overparameterization and show that
the representations learned within these models are highly
anisotropic (Mu & Viswanath, 2018; Ethayarajh, 2019). An
emerging body of work is proposed to distill and prune the
model, including (Sanh et al., 2019; Sun et al., 2019; Voita
et al., 2019b; Sajjad et al., 2020). Our MGK/MLK approch
can be combined with these distilling and pruning methods
to improve their performance.

Mixture Models for Transformers Several works have
used mixture models to study and enhance transformers.
Switch transformers (Fedus et al., 2021) employ the rout-
ing algorithm in Mixture of Experts (MoE) to reduce the
communication and computational costs in transformers.
(Nguyen et al., 2018; Patel et al., 2016) derive a probablistic
framework based on GMMs for deep neural networks that
can be extended to study transformers and attention-based
architectures. Other works that use mixture models with
transformers include (Cho et al., 2020; Guo et al., 2019).

5 Concluding Remarks
In this paper, we proposed Transformer-MGK, a class of
transformers that use Gaussian mixture model to represent
the key vectors in self-attention. Transformer-MGK reduces
the redundancy among heads in transformer. Furthermore,
attention heads in the Transformer-MGK have better repre-
sentation capability than those in the baseline, allowing the
Transformer-MGK to achieve comparable or better perfor-
mance than the baseline softmax transformer while using
only half of the number of heads. Comparing to the baseline,
the Transformer-MGK uses fewer parameters and requires
less FLOPs to compute. We extend the Transformer-MGK
into the Transformer-MLK to use linear attentions for better
efficiency. We empirically validate the advantage of the
Transformer-MGK/MLK over the baseline softmax and lin-
ear transformers on various benchmarks including tasks in
the LRA benchmark, WikiText-103 language modeling, and
IWSLT’14 machine translation. In our work, we make the
means and the variance of the cluster learnable variables
and constants, respectively. It is interesting to explore how
to leverage the M-step update in the EM algorithm to update
those parameters. We leave the application of MGK/MLK
for improving the vision transformer (Dosovitskiy et al.,
2020; Touvron et al., 2020) as future work.

The advantage in efficiency of MGK/MLK grows
with the sequence length and the model size.
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Redundancy Reduction
Attention Visualization
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MGK attention has more representation capacity 
and is able to capture more diverse attention patterns than softmax attentionMGK attention has more representation capacity and is able to capture more

diverse attention patterns than softmax attention.
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Conclusions

We construct a Gaussian mixture model underlying the self-attention
mechanism.

We show that the attention score in the attention matrix corresponds to a posterior
distribution in our mixture model.

Using our model, we propose a new attention mechanism that uses a mixture of
Gaussian and linear keys to increase the efficiency and reduces the redundancy in
multi-head self-attention.

Current/Future Work: Understanding transformers via nonparametric regression
and the applications of the Fourier integral attention.

Tan M Nguyen, Minh Pham, Tam Nguyen, Khai Nguyen, Stanley J. Osher, Nhat Ho. “Transformer with Fourier Integral Attentions”.
arXiv:2206.00206, 2022.
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