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• Graph Kernels

– Shortest-path Kernel (SP) (Borgwardt & Kriegel, 2005)

– Graphlet Kernel (GR) (Shervashidze et al., 2009)

– Weisfeiler-Lehman Subtree Kernel (k-WL) (Shervashidze et al., 2011)

– δ-k-dimensional Local WL algorithm (δ-LWL) (Morris et al., 2020)

Pro: expressively powerful

Cons: non-inductive, vertex-centric, and computationally expensive
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• Graph Neural Networks

– Graph Isomorphism Network (GIN) (Xu et al., 2019) and RGIN (Liu et al., 2020)

– DiffPool (Ying et al., 2018)

– DMPNN (Liu et al., 2022)

– EASN (Bevilacqua et al., 2021)

Pro: high-efficient in parallel 

Cons: over-parameterization and over-smoothing
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• Information Lossless in Edge-to-vertex Transforms

non-injection and information lossless 



Our Solution
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• Add 1 Dummy Node and 2|𝒱𝒢| Dummy Edges

computation disaster
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surjective and elegant

Theorem 3.4. For any ℋΦ transformed by 𝐿Φ such that ℋΦ = 𝐿Φ 𝒢 , 𝐿Φ
−1 can 

always transform ℋΦ back to 𝒢, i.e., 𝐿Φ
−1 𝐿Φ 𝒢 = 𝒢
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surjective and elegant

Theorem 3.4. For any ℋΦ transformed by 𝐿Φ such that ℋΦ = 𝐿Φ 𝒢 , 𝐿Φ
−1 can 

always transform ℋΦ back to 𝒢, i.e., 𝐿Φ
−1 𝐿Φ 𝒢 = 𝒢

Proposition 3.6. 𝐿Φ is a monomorphism. Corollary 3.7. Isomorphisms hold after 𝐿Φ.

Corollary 3.8. If a function ℎ is permutation-invariant, then ℎ ∘ 𝐿Φ is also permutation-invariant.



• Conventional Graph Kernels

where 𝑘 is a kernel function to measure graph similarity, and ℎ is the 
permutation-invariant function from graph space to Hilbert space.

Extensions of Graph Kernel Functions
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• Conventional Graph Kernels

where 𝑘 is a kernel function to measure graph similarity, and ℎ is the 
permutation-invariant function from graph space to Hilbert space.

• Graph Kernels with Dummy Nodes and Edges

• Graph Kernels with Edge-to-vertex Transforms

Extensions of Graph Kernel Functions

18

enforce the kernel functions to pay more attention to original structures



• Conventional Message Passing Framework

where 𝒙𝑣
(𝑡)

is the hidden state of vertex 𝑣 at the 𝑡-th layer network, 𝒩𝑣 is 𝑣’s 

neighbor collection, 𝒚 𝑢,𝑣
𝑡

is the edge tensor for 𝑢, 𝑣 , 𝚫𝑣
𝑡+1

is the aggregated 
message from neighbors.
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𝑡

is the edge tensor for 𝑢, 𝑣 , 𝚫𝑣
𝑡+1

is the aggregated 
message from neighbors.

• Graph Neural Networks with Dummy Nodes and Edges
simply replacing the input graph 𝒢 with 𝒢𝜑, i.e., introducing a new 𝑥𝜑 and each 
neighbor collection except 𝒩𝜑 adds the dummy node 𝜑.

• Graph Neural Networks with Edge-to-vertex Transforms
simply replacing the input graph 𝒢 with ℋΦ, i.e., performing edge-centric 
message passing in the line graph.

Extensions of Graph Neural Networks
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Experiments on Graph Classification
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– We observe consistent performance improvement after adding dummy nodes 
(𝒢𝜑) for most classifiers.

– We also see the further improvement on average after using ℋΦ.

Classification error estimation: accuracy
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– We observe consistent performance improvement after adding dummy nodes 
(𝒢𝜑) for most classifiers.

– We also see the further improvement on average after using ℋΦ.

– Kernels with the 2-order structures nearly surpass the 1-order kernels and 1-WL 
graph neural networks.

– Accuracies of GNNs get boosted again when the input changes from 𝒢𝜑 to ℋΦ.

Classification error estimation: accuracy



Experiments on Subgraph Isomorphisms
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– Overall, RGIN with 𝒢𝜑 outperforms other GNNs except LRP-based models.

– HGT has the most prominent performance boost, indicating that the dummy 
nodes provide an option to drop all pattern-irrelevant messages.

counting error estimation: RMSE, MAE matching error estimation: graph edit distance
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– Overall, RGIN with 𝒢𝜑 outperforms other GNNs except LRP-based models.

– HGT has the most prominent performance boost, indicating that the dummy 
nodes provide an option to drop all pattern-irrelevant messages.

– Deep-LRP and DMPNN-LRP benefit from the dummy nodes in counting, but they 
gets the increase of matching errors due to the star typology around the dummy.

counting error estimation: RMSE, MAE matching error estimation: graph edit distance



Discussions about Expressive Power
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• Pattern Learning Capability
Theorem I: a 𝑘-WL graph neural network can count any patterns at most 𝑘 vertices.

Theorem II: a 𝑇-layer 𝑘-WL graph neural network cannot count any patterns with equal 

to or more than 𝑘 + 1 2𝑇 vertices (Chen et al., 2020).

Lemma III: 1-WL = RGIN = RGAT < 2-WL = RGIN w/ 𝜑 = RGAT w/ 𝜑 ≤
Transformer with a dummy [CLS] token.

Corollary IV: a 𝑇-layer Transformer with a dummy [CLS] token can capture any 

patterns with 2 tokens, and cannot capture patterns with no less than 3 ⋅ 2𝑇 tokens.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph neural networks count substructures? In NeurIPS, 2020.
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• We analyze the role of dummy nodes in the lossless edge-to-vertex 
transform.

• We further prove that a dummy node with connections to all 
existing vertices can preserve the graph structure.

• We design an efficient monomorphic edge-to-vertex transform and 
find its inverse to recover the original graph back.

• We extend graph kernels and graph neural networks with dummy 
nodes to boost their graph/subgraph learning performance.

• We discuss the capability of MPNNs and Transformers with special 
dummy elements.



27

Thanks
Email: xliucr@cse.ust.hk

Paper                                        Code
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