Boosting Graph Structure Learning with Dummy Nodes Xin Liu¹, Jiayang Cheng¹, Yangqiu Song¹, Xin Jiang² ¹The Hong Kong University of Science and Technology ²Huawei Noah's Ark Lab # Graph Learning # Graph Structure Learning Algorithms #### Graph Kernels - Shortest-path Kernel (SP) (Borgwardt & Kriegel, 2005) - Graphlet Kernel (GR) (Shervashidze et al., 2009) - Weisfeiler-Lehman Subtree Kernel (k-WL) (Shervashidze et al., 2011) - δ-k-dimensional Local WL algorithm (δ-LWL) (Morris et al., 2020) Pro: expressively powerful Cons: non-inductive, vertex-centric, and computationally expensive # Graph Structure Learning Algorithms #### Graph Kernels - Shortest-path Kernel (SP) (Borgwardt & Kriegel, 2005) - Graphlet Kernel (GR) (Shervashidze et al., 2009) - Weisfeiler-Lehman Subtree Kernel (k-WL) (Shervashidze et al., 2011) - δ-k-dimensional Local WL algorithm (δ-LWL) (Morris et al., 2020) Pro: expressively powerful **Cons**: non-inductive, vertex-centric, and computationally expensive #### Graph Neural Networks - Graph Isomorphism Network (GIN) (Xu et al., 2019) and RGIN (Liu et al., 2020) - DiffPool (Ying et al., 2018) - DMPNN (Liu et al., 2022) - EASN (Bevilacqua et al., 2021) **Pro:** high-efficient in parallel Cons: over-parameterization and over-smoothing - Directed Connected Heterogeneous Graphs - Similar Structures → Similar Edge Structures - Directed Connected Heterogeneous Graphs - Similar Structures → Similar Edge Structures - Edge-to-vertex Transform L - $-\mathcal{G} \to \mathcal{H}$: vertices/edges in the line graph \mathcal{H} correspond to edges/vertices in the original graph \mathcal{G} - Directed Connected Heterogeneous Graphs - Similar Structures → Similar Edge Structures - Edge-to-vertex Transform L - $-\mathcal{G} \to \mathcal{H}$: vertices/edges in the line graph \mathcal{H} correspond to edges/vertices in the original graph \mathcal{G} - Directed Connected Heterogeneous Graphs - Similar Structures → Similar Edge Structures - Edge-to-vertex Transform L - $-\mathcal{G} \to \mathcal{H}$: vertices/edges in the line graph \mathcal{H} correspond to edges/vertices in the original graph \mathcal{G} - Directed Connected Heterogeneous Graphs - Similar Structures → Similar Edge Structures - Edge-to-vertex Transform L - $-\mathcal{G} \to \mathcal{H}$: vertices/edges in the line graph \mathcal{H} correspond to edges/vertices in the original graph \mathcal{G} #### Non-injective Edge-to-vertex Transforms Information Lossless in Edge-to-vertex Transforms three vertices with 0 outdegree (a) one vertex with 0 indegree, (b) one vertex with 0 indegree, two vertices with 0 outdegree non-injection and information lossless (c) two vertices with 0 indegree, one vertex with 0 outdegree (d) three vertices with 0 indegree, one vertex with 0 outdegree #### **Our Solution** Add 1 Dummy Node and $2|\mathcal{V}_{\mathcal{G}}|$ Dummy Edges $$|\mathcal{V}_{\mathcal{H}'}| = |\mathcal{E}_{\mathcal{G}'}|$$ $$= |\mathcal{E}_{\mathcal{G}}| + 2|\mathcal{V}_{\mathcal{G}}| = |\mathcal{V}_{\mathcal{H}}| + 2|\mathcal{V}_{\mathcal{G}}|$$ $$|\mathcal{E}_{\mathcal{H}'}| = |\mathcal{V}_{\mathcal{G}}|^2 + \sum_{v \in \mathcal{V}_{\mathcal{G}}} (d_v^- + 1) \cdot (d_v^+ + 1)$$ $$= |\mathcal{V}_{\mathcal{G}}|^2 + \sum_{v \in \mathcal{V}_{\mathcal{G}}} d_v^- \cdot d_v^+ + \sum_{v \in \mathcal{V}_{\mathcal{G}}} (d_v^- + d_v^+) + |\mathcal{V}_{\mathcal{G}}|$$ $$= |\mathcal{E}_{\mathcal{H}}| + |\mathcal{V}_{\mathcal{G}}|^2 + |\mathcal{V}_{\mathcal{G}}| + 2|\mathcal{V}_{\mathcal{E}}|$$ (8) computation disaster # New Edge-to-vertex Transform (a) edge-to-vertex transform L_{Φ} #### New Edge-to-vertex Transform #### (a) edge-to-vertex transform L_{Φ} $$|\mathcal{V}_{\mathcal{H}'}| = |\mathcal{E}_{\mathcal{G}'}|$$ $$= |\mathcal{E}_{\mathcal{G}}| + 2|\mathcal{V}_{\mathcal{G}}| = |\mathcal{V}_{\mathcal{H}}| + 2|\mathcal{V}_{\mathcal{G}}|$$ $$|\mathcal{E}_{\mathcal{H}'}| = |\mathcal{V}_{\mathcal{G}}|^2 + \sum_{v \in \mathcal{V}_{\mathcal{G}}} (d_v^- + 1) \cdot (d_v^+ + 1)$$ $$= |\mathcal{V}_{\mathcal{G}}|^2 + \sum_{v \in \mathcal{V}_{\mathcal{G}}} d_v^- \cdot d_v^+ + \sum_{v \in \mathcal{V}_{\mathcal{G}}} (d_v^- + d_v^+) + |\mathcal{V}_{\mathcal{G}}|$$ $$= |\mathcal{E}_{\mathcal{H}}| + |\mathcal{V}_{\mathcal{G}}|^2 + |\mathcal{V}_{\mathcal{G}}| + 2|\mathcal{V}_{\mathcal{E}}|$$ (8) $$|\mathcal{V}_{\mathcal{H}'}| = |\mathcal{V}_{\mathcal{H}}| + 1 \tag{10}$$ $$|\mathcal{E}_{\mathcal{H}'}| = |\mathcal{E}_{\mathcal{H}}| + 2|\mathcal{V}_{\mathcal{E}}| \tag{11}$$ efficient and injective # Inverse of New Edge-to-vertex Transform (b) inverse edge-to-vertex transform L_{Φ}^{-1} #### Inverse of New Edge-to-vertex Transform (b) inverse edge-to-vertex transform L_{Φ}^{-1} **Theorem 3.4.** For any \mathcal{H}_{Φ} transformed by L_{Φ} such that $\mathcal{H}_{\Phi} = L_{\Phi}(\mathcal{G})$, L_{Φ}^{-1} can always transform \mathcal{H}_{Φ} back to \mathcal{G} , i.e., $L_{\Phi}^{-1}(L_{\Phi}(\mathcal{G})) = \mathcal{G}$ surjective and elegant #### Inverse of New Edge-to-vertex Transform (b) inverse edge-to-vertex transform L_{Φ}^{-1} **Theorem 3.4.** For any \mathcal{H}_{Φ} transformed by L_{Φ} such that $\mathcal{H}_{\Phi} = L_{\Phi}(\mathcal{G})$, L_{Φ}^{-1} can always transform \mathcal{H}_{Φ} back to \mathcal{G} , i.e., $L_{\Phi}^{-1}(L_{\Phi}(\mathcal{G})) = \mathcal{G}$ surjective and elegant **Proposition 3.6.** L_{Φ} is a monomorphism. Corollary 3.7. Isomorphisms hold after L_{Φ} . **Corollary 3.8.** If a function h is permutation-invariant, then $h \circ L_{\Phi}$ is also permutation-invariant. #### Extensions of Graph Kernel Functions #### Conventional Graph Kernels $$k(\mathcal{G}_1, \mathcal{G}_2) = \langle h(\mathcal{G}_1), h(\mathcal{G}_2) \rangle$$ where k is a kernel function to measure graph similarity, and h is the permutation-invariant function from graph space to Hilbert space. #### Extensions of Graph Kernel Functions Conventional Graph Kernels $$k(\mathcal{G}_1, \mathcal{G}_2) = \langle h(\mathcal{G}_1), h(\mathcal{G}_2) \rangle$$ where k is a kernel function to measure graph similarity, and h is the permutation-invariant function from graph space to Hilbert space. Graph Kernels with Dummy Nodes and Edges $$k_{\varphi}(\mathcal{G}_{1}, \mathcal{G}_{2}) = k(\mathcal{G}_{1}, \mathcal{G}_{2}) + k(\mathcal{G}_{\varphi_{1}}, \mathcal{G}_{\varphi_{2}})$$ $$= \langle h(\mathcal{G}_{1}), h(\mathcal{G}_{2}) \rangle + \langle h(\mathcal{G}_{\varphi_{1}}), h(\mathcal{G}_{\varphi_{2}}) \rangle,$$ Graph Kernels with Edge-to-vertex Transforms $$k_{\Phi}(\mathcal{G}_{1}, \mathcal{G}_{2}) = k(\mathcal{G}_{1}, \mathcal{G}_{2}) + k(\mathcal{H}_{\Phi_{1}}, \mathcal{H}_{\Phi_{2}})$$ = $\langle h(\mathcal{G}_{1}), h(\mathcal{G}_{2}) \rangle + \langle h(L_{\Phi}(\mathcal{G}_{1})), h(L_{\Phi}(\mathcal{G}_{2})) \rangle,$ enforce the kernel functions to pay more attention to original structures #### Extensions of Graph Neural Networks Conventional Message Passing Framework $$\begin{aligned} \boldsymbol{\Delta}_{v}^{(t+1)} &= Aggregate(\{Message(\boldsymbol{x}_{v}^{(t)}, \boldsymbol{x}_{u}^{(t)}, \boldsymbol{y}_{(u,v)}) | u \in \mathcal{N}_{v}\}), \\ \boldsymbol{x}_{v}^{(t+1)} &= Update(\boldsymbol{x}_{v}, \boldsymbol{\Delta}_{v}^{(t+1)}), \end{aligned}$$ where $\boldsymbol{x}_v^{(t)}$ is the hidden state of vertex v at the t-th layer network, \mathcal{N}_v is v's neighbor collection, $\boldsymbol{y}_{(u,v)}^{(t)}$ is the edge tensor for (u,v), $\boldsymbol{\Delta}_v^{(t+1)}$ is the aggregated message from neighbors. # Extensions of Graph Neural Networks Conventional Message Passing Framework $$\boldsymbol{\Delta}_{v}^{(t+1)} = Aggregate(\{Message(\boldsymbol{x}_{v}^{(t)}, \boldsymbol{x}_{u}^{(t)}, \boldsymbol{y}_{(u,v)}) | u \in \mathcal{N}_{v}\}),$$ $$\boldsymbol{x}_{v}^{(t+1)} = Update(\boldsymbol{x}_{v}, \boldsymbol{\Delta}_{v}^{(t+1)}),$$ where $\boldsymbol{x}_v^{(t)}$ is the hidden state of vertex v at the t-th layer network, \mathcal{N}_v is v's neighbor collection, $\boldsymbol{y}_{(u,v)}^{(t)}$ is the edge tensor for (u,v), $\boldsymbol{\Delta}_v^{(t+1)}$ is the aggregated message from neighbors. - Graph Neural Networks with Dummy Nodes and Edges simply replacing the input graph \mathcal{G} with \mathcal{G}_{φ} , i.e., introducing a new x_{φ} and each neighbor collection except \mathcal{N}_{φ} adds the dummy node φ . - Graph Neural Networks with Edge-to-vertex Transforms simply replacing the input graph \mathcal{G} with \mathcal{H}_{Φ} , i.e., performing edge-centric message passing in the line graph. #### Experiments on Graph Classification #### Classification error estimation: accuracy | Models | | \mathcal{G} | PROTEINS ${\cal G}_{arphi}$ | \mathcal{H}_{Φ} | ${\cal G}$ | D&D ${\cal G}_{arphi}$ | ${\cal H}_\Phi$ | ${\cal G}$ | NCI109 \mathcal{G}_{arphi} | ${\cal H}_\Phi$ | $\mathcal G$ | \mathcal{G}_{arphi} | \mathcal{H}_{Φ} | |---------|----------------------|------------------|-----------------------------|----------------------|----------------|------------------------|------------------|------------------|------------------------------|------------------|------------------|-----------------------|----------------------| | | SP | 73.48±3.93 | 74.20 ± 3.23 | 73.39±3.04 | 80.50±3.6 | 5 79.58±3.91 | 81.51±3.91 | 73.65 ± 2.34 | 73.84 ± 2.07 | 74.11±2.22 | 74.18±1.67 | 74.70±1.74 | 74.40±1.74 | | l | GR | 70.45 ± 6.54 | 74.20 ± 4.44 | 73.66 ± 4.00 | 8.82 ± 3.8 | 3 79.66±5.18 | 78.82 ± 3.87 | 66.45 ± 2.14 | 72.46 ± 2.51 | 71.81 ± 2.69 | 65.16 ± 2.30 | 73.04 ± 1.81 | 71.07 ± 1.47 | | | WLOA | 72.59 ± 2.46 | 73.84 ± 3.29 | 74.02 ± 3.47 | '9.24±3.6 | 79.24±3.81 | 78.57 ± 3.59 | 85.43 ± 1.51 | 84.61 ± 1.52 | 84.81 ± 1.11 | 85.96 ± 1.82 | 86.33 ± 1.77 | 86.37 ± 1.75 | | Kernel | 1-WL | 71.79 ± 4.52 | 73.30 ± 4.14 | 73.48 ± 5.02 | 80.50±4.4 | 81.26±4.08 | 80.42 ± 3.85 | 85.54 ± 1.34 | 83.74 ± 0.94 | 84.37 ± 1.02 | 85.13 ± 1.69 | 84.87 ± 1.77 | 85.38 ± 1.21 | | Kerner | 2-WL | 74.11±5.19 | 75.27 ± 4.67 | OOM | OOM | OOM | OOM | 68.09 ± 1.55 | 68.38 ± 1.21 | 72.24 ± 1.85 | 67.71 ± 1.33 | 67.49 ± 1.45 | 69.00 ± 2.34 | | İ | δ -2-WL | 74.20 ± 4.98 | 74.82 ± 4.16 | OOM | OOM | OOM | OOM | 68.00 ± 1.94 | 68.26 ± 1.59 | 70.34 ± 1.87 | 67.32 ± 1.34 | 67.37 ± 1.40 | 69.20 ± 2.18 | | | δ -2-LWL | 73.66 ± 5.10 | 74.37 ± 3.34 | 74.11 ± 3.72 | 7.06±5.9 |) 77.31±5.98 | 79.41 ± 5.28 | 84.20 ± 1.44 | 83.12 ± 1.34 | 83.82 ± 1.06 | 85.40 ± 1.28 | 84.06 ± 1.54 | 85.40 ± 1.51 | | | δ -2-LWL $^+$ | 78.12±4.75 | 83.48 ± 4.34 | 84.55 ± 3.62 | 7.14 ± 6.0 | 77.56±6.30 | 79.58 ± 6.24 | 88.79 ± 0.94 | 89.42 ± 1.37 | 88.57±0.97 | 91.92±1.93 | 93.67 ± 0.84 | 91.65 ± 1.96 | | | GraphSAGE | E 73.48±5.60 | 73.93 ± 5.68 | - | 7.73±4.6 | 78.91±4.59 | - | 73.38 ± 2.68 | 74.13 ± 2.30 | - | 73.82 ± 2.17 | 74.31 ± 2.27 | - | | | GCN | 72.95 ± 3.88 | 74.02 ± 3.82 | - | 2.77 ± 4.6 | 2 80.76 ±5.37 | - | 50.34 ± 2.69 | 51.67 ± 5.52 | - | 61.75±11.1 | 68.95 ± 10.8 | - | | | GIN | 73.84 ± 4.46 | 74.11 ± 4.12 | - | 6.97±3.8 | 77.65±3.46 | - | 72.61 ± 2.37 | 73.82 ± 2.50 | - | 73.50 ± 1.80 | 75.16 ± 1.49 | - | | Network | RGCN | 73.30 ± 4.90 | 74.98 ± 4.50 | 75.09 \pm 4.03 | 9.16±9.9 | 7 69.24± 10.0 | 78.47 ± 5.24 | 50.29 ± 2.08 | 51.52 ± 4.37 | 71.71 ± 7.59 | 52.75 ± 4.75 | 57.27 ± 9.49 | 74.04 ± 1.15 | | | RGIN | 68.75 ± 6.59 | 70.54 ± 5.03 | 74.20 ± 2.93 | 7.65±4.6 | 2 78.15±4.60 | 77.73±4.42 | 64.20 ± 2.85 | 64.52 ± 2.58 | 75.43 \pm 3.50 | 66.11 ± 1.77 | 66.11 ± 1.69 | 76.18 ± 2.03 | | | DiffPool | 75.62 ± 5.11 | 75.98 ± 3.89 | - | 1.41 ± 5.1 | 80.25 ± 4.69 | - | 75.29 ± 1.85 | 75.44 ± 1.90 | - | 76.62 ± 1.93 | 77.08 ± 1.33 | - | | | HGP-SL | 71.25 ± 7.13 | 74.46 ± 3.77 | | 4.62 ± 3.1 |) 82.07 ±2.11 | - | 74.78 ± 2.37 | 74.32 ± 1.84 | - | 74.94 ± 0.88 | 76.08 ± 1.94 | | | A | werage | 73.13±2.10 | 74.77±2.60 | 75.31±3.53 | 7.20±3.2 | 5 78.59±3.05 | 79.31±1.13 | 72.07±11.20 | 72.62 ± 10.53 | 77.72±6.51 | 73.48±10.1 | 75.10±8.98 | 78.27±7.77 | | | | | | | | | | | | | | | | - We observe consistent performance improvement after adding dummy nodes $(\mathcal{G}_{m{arphi}})$ for most classifiers. - We also see the further improvement on average after using \mathcal{H}_{Φ} . #### Experiments on Graph Classification #### Classification error estimation: accuracy | | / 1 - 1 - | | PROTEINS | | D&D | | | | NCI109 | | NCI1 | | | |----------------|----------------------|-------------------------|--------------------|------------------|------------------|--------------------|------------------|--------------------------|----------------------|------------------|------------------|----------------------|----------------------| | 1 | Models | $ \mathcal{G} $ | ${\cal G}_{arphi}$ | ${\cal H}_\Phi$ | ${\cal G}$ | ${\cal G}_{arphi}$ | ${\cal H}_\Phi$ | ${\cal G}$ | ${\cal G}_{\varphi}$ | ${\cal H}_\Phi$ | ${\cal G}$ | ${\cal G}_{\varphi}$ | \mathcal{H}_{Φ} | | | SP | $ 73.48\pm3.93 $ | 74.20±3.23 | 73.39 ± 3.04 | 80.50 ± 3.66 | 79.58±3.91 | 81.51±3.91 | 73.65 ± 2.34 | 73.84 ± 2.07 | 74.11±2.22 | 74.18 ± 1.67 | 74.70±1.74 | 74.40±1.74 | | | GR | $ 70.45\pm6.54 $ | 74.20 ± 4.44 | 73.66 ± 4.00 | 78.82 ± 3.83 | 79.66 ± 5.18 | 378.82 ± 3.87 | 66.45 ± 2.14 | 72.46 ± 2.51 | 71.81 ± 2.69 | 65.16 ± 2.30 | 73.04 ± 1.81 | 71.07 ± 1.47 | | | WLOA | $ 72.59\pm2.46 $ | 73.84 ± 3.29 | 74.02 ± 3.47 | 79.24 ± 3.61 | 79.24 ± 3.81 | 78.57 ± 3.59 | 85.43 ± 1.51 | 84.61 ± 1.52 | 84.81 ± 1.11 | 85.96 ± 1.82 | 86.33 ± 1.77 | 86.37 ± 1.75 | | Kernel | 1-WL | $ 71.79\pm 4.52 $ | 73.30 ± 4.14 | 73.48 ± 5.02 | 80.50 ± 4.43 | 81.26 ± 4.08 | 80.42 ± 3.85 | 85.54 ± 1.34 | 83.74 ± 0.94 | 84.37 ± 1.02 | 85.13 ± 1.69 | 84.87 ± 1.77 | 85.38 ± 1.21 | | Keillei | 2-WL | 74.11±5.19 | 75.27 ± 4.67 | OOM | OOM | OOM | OOM | 68.09 ± 1.55 | 68.38 ± 1.21 | 72.24 ± 1.85 | 67.71 ± 1.33 | 67.49 ± 1.45 | 69.00 ± 2.34 | | | δ -2-WL | 74.20 ± 4.98 | 74.82 ± 4.16 | OOM | OOM | OOM | OOM | 68.00 ± 1.94 | 68.26 ± 1.59 | 70.34 ± 1.87 | 67.32 ± 1.34 | 67.37 ± 1.40 | 69.20 ± 2.18 | | | δ -2-LWL | $ 73.66\pm 5.10 $ | 74.37 ± 3.34 | 74.11 ± 3.72 | 77.06 ± 5.99 | 77.31 ± 5.98 | 379.41 ± 5.28 | 84.20 ± 1.44 | 83.12 ± 1.34 | 83.82 ± 1.06 | 85.40 ± 1.28 | 84.06 ± 1.54 | 85.40 ± 1.51 | | | δ -2-LWL $^+$ | 78.12 ± 4.75 | 83.48 ± 4.34 | 84.55 ± 3.62 | 77.14 ± 6.05 | 77.56 ± 6.30 | 79.58±6.24 | 88.79 ± 0.94 | 89.42 ± 1.37 | 88.57 ± 0.97 | 91.92 ± 1.93 | 93.67 ± 0.84 | 91.65 ± 1.96 | | | GraphSAGE | 173.48 ± 5.66 | 73 93+5 68 | _ | 77 73+4 66 | 78 91+4 50 |) _ | 73.38 ± 2.68 | 74.13 ± 2.30 | _ | 73.82 ± 2.17 | 7431 + 227 | | | | GCN | 72.95 ± 3.88 | | | 72.77 ± 4.62 | | | 50.34 ± 2.69 | 51.67 ± 5.52 | | 61.75 ± 11.1 | | - | | Network | RGCN
RGIN | 1 | | | | | | 50.29±2.08
64.20±2.85 | | | | | | | | Difficult | 75.02 \(\perps_{0.17}\) | 73.70 13.07 | - | 01.41 _ 3.11 | 00.25±4.05 | - | 75.29 ± 1.05 | /3.44±1.90 | - | 70.02 ± 1.93 | 77.00±1.55 | | | | HGP-SL | 71.25 ± 7.13 | 74.46 ± 3.77 | - | 74.62 ± 3.19 | 82.07 ± 2.11 | l - | 74.78 ± 2.37 | 74.32 ± 1.84 | - | 74.94 ± 0.88 | 76.08 ± 1.94 | | | \overline{A} | verage | 73.13 ± 2.10 | 74.77 ± 2.60 | 75.31 ± 3.53 | 77.20 ± 3.26 | 78.59±3.05 | 5 79.31±1.13 | 72.07 ± 11.20 | 72.62 ± 10.53 | 77.72±6.51 | 73.48±10.16 | 75.10±8.98 | 78.27 ± 7.77 | - We observe consistent performance improvement after adding dummy nodes (\mathcal{G}_{ω}) for most classifiers. - We also see the further improvement on average after using \mathcal{H}_{Φ} . - Kernels with the 2-order structures nearly surpass the 1-order kernels and 1-WL graph neural networks. - Accuracies of GNNs get boosted again when the input changes from $\mathcal{G}_{m{arphi}}$ to $\mathcal{H}_{m{\Phi}}$. # Experiments on Subgraph Isomorphisms counting error estimation: RMSE, MAE matching error estimation: graph edit distance | Models | | | | Homog | geneous | | r | | Heterogeneous | | | | | | | |-----------|-------------------------|--------|-----------|---------|---------|---------|---------|--------|---------------|--------|-------|-------|-------|--|--| | | | E | Erdős-Ren | ıyi | | Regular | | | Complex | X. | N N | MUTAG | | | | | | | RMSE | MAE | GED | | | | RGCN | \mathcal{G} | 9.386 | 5.829 | 28.963 | 14.789 | 9.772 | 70.746 | 28.601 | 9.386 | 64.122 | 0.777 | 0.334 | 1.441 | | | | RUCIN | \mathcal{G}_{\wp} | 7.764 | 4.654 | 24.438 | 14.077 | 9.511 | 71.393 | 26.389 | 7.110 | 55.600 | 0.534 | 0.191 | 1.052 | | | | DCIN | \mathcal{G} | 6.063 | 3.712 | 22.155 | 13.554 | 8.580 | 56.353 | 20.893 | 4.411 | 56.263 | 0.273 | 0.082 | 0.329 | | | | RGIN | \mathcal{G}_{α} | 4.769 | 2.898 | 15.219 | 10.871 | 6.874 | 43.537 | 19.436 | 3.846 | 41.337 | 0.193 | 0.064 | 0.277 | | | | HCT | \mathcal{G} | 24.376 | 14.630 | 104.000 | 26.713 | 17.482 | 191.674 | 34.055 | 8.336 | 70.080 | 1.317 | 0.526 | 3.644 | | | | HGT | \mathcal{G}_{arphi} | 5.969 | 3.691 | 23.401 | 13.813 | 8.813 | 64.926 | 20.841 | 4.707 | 47.409 | 0.876 | 0.345 | 2.973 | | | | CompGCN | \mathcal{G} | 6.706 | 4.274 | 25.548 | 14.174 | 9.685 | 64.677 | 22.287 | 5.127 | 57.082 | 0.300 | 0.085 | 0.278 | | | | Compociv | \mathcal{G}_{arphi} | 4.981 | 3.019 | 16.263 | 11.450 | 7.443 | 46.802 | 20.786 | 4.048 | 56.269 | 0.321 | 0.089 | 0.262 | | | | DMPNN | \mathcal{G} | 5.330 | 3.308 | 23.411 | 11.980 | 7.832 | 56.222 | 18.974 | 3.992 | 56.933 | 0.232 | 0.088 | 0.320 | | | | DIVITIVIN | $ \mathcal{G}_{arphi} $ | 5.220 | 3.130 | 23.285 | 11.259 | 7.136 | 49.179 | 18.885 | 3.892 | 73.161 | 0.259 | 0.101 | 0.623 | | | | Daan I DD | \mathcal{G} | 0.794 | 0.436 | 2.571 | 1.373 | 0.788 | 5.432 | 27.490 | 5.850 | 56.772 | 0.260 | 0.094 | 0.437 | | | | Deep-LRP | \mathcal{G}_{arphi} | 0.710 | 0.402 | 2.218 | 1.145 | 0.718 | 4.611 | 24.458 | 5.094 | 57.398 | 0.356 | 0.115 | 0.849 | | | | DMPNN-LRP | \mathcal{G} | 0.475 | 0.287 | 1.538 | 0.617 | 0.422 | 2.745 | 20.425 | 4.173 | 32.200 | 0.196 | 0.062 | 0.210 | | | | DMPNN-LKF | $ \mathcal{G}_{arphi} $ | 0.477 | 0.260 | 1.457 | 0.633 | 0.413 | 2.538 | 18.127 | 4.112 | 39.594 | 0.186 | 0.057 | 0.265 | | | - Overall, RGIN with \mathcal{G}_{arphi} outperforms other GNNs except LRP-based models. - HGT has the most prominent performance boost, indicating that the dummy nodes provide an option to drop all pattern-irrelevant messages. #### Experiments on Subgraph Isomorphisms counting error estimation: RMSE, MAE matching error estimation: graph edit distance | | | | | Homoş | geneous | | | | Heterogeneous | | | | | | | |-----------|-------------------------|--------|-----------|---------|---------|---------|---------|--------|---------------|--------|-------|-------|-------|--|--| | Models | | E | Erdős-Ren | ıyi | | Regular | | (| Complex | K | N | MUTAG | 1 | | | | | | RMSE | MAE | GED | | | | RGCN | \mathcal{G} | 9.386 | 5.829 | 28.963 | 14.789 | 9.772 | 70.746 | 28.601 | 9.386 | 64.122 | 0.777 | 0.334 | 1.441 | | | | ROCIV | \mathcal{G}_{arphi} | 7.764 | 4.654 | 24.438 | 14.077 | 9.511 | 71.393 | 26.389 | 7.110 | 55.600 | 0.534 | 0.191 | 1.052 | | | | RGIN | \mathcal{G} | 6.063 | 3.712 | 22.155 | 13.554 | 8.580 | 56.353 | 20.893 | 4.411 | 56.263 | 0.273 | 0.082 | 0.329 | | | | KUIN | $ \mathcal{G}_{arphi} $ | 4.769 | 2.898 | 15.219 | 10.871 | 6.874 | 43.537 | 19.436 | 3.846 | 41.337 | 0.193 | 0.064 | 0.277 | | | | HGT | \mathcal{G} | 24.376 | 14.630 | 104.000 | 26.713 | 17.482 | 191.674 | 34.055 | 8.336 | 70.080 | 1.317 | 0.526 | 3.644 | | | | пот | $ \mathcal{G}_{arphi} $ | 5.969 | 3.691 | 23.401 | 13.813 | 8.813 | 64.926 | 20.841 | 4.707 | 47.409 | 0.876 | 0.345 | 2.973 | | | | CompGCN | \mathcal{G} | 6.706 | 4.274 | 25.548 | 14.174 | 9.685 | 64.677 | 22.287 | 5.127 | 57.082 | 0.300 | 0.085 | 0.278 | | | | Compoch | $ \mathcal{G}_{arphi} $ | 4.981 | 3.019 | 16.263 | 11.450 | 7.443 | 46.802 | 20.786 | 4.048 | 56.269 | 0.321 | 0.089 | 0.262 | | | | DMPNN | \mathcal{G} | 5.330 | 3.308 | 23.411 | 11.980 | 7.832 | 56.222 | 18.974 | 3.992 | 56.933 | 0.232 | 0.088 | 0.320 | | | | DIMILIM | \mathcal{G}_{ω} | 5.220 | 3.130 | 23.285 | 11.259 | 7.136 | 49.179 | 18.885 | 3.892 | 73.161 | 0.259 | 0.101 | 0.623 | | | | Daam I DD | \mathcal{G} | 0.794 | 0.436 | 2.571 | 1.373 | 0.788 | 5.432 | 27.490 | 5.850 | 56.772 | 0.260 | 0.094 | 0.437 | | | | Deep-LRP | \mathcal{G}_{arphi} | 0.710 | 0.402 | 2.218 | 1.145 | 0.718 | 4.611 | 24.458 | 5.094 | 57.398 | 0.356 | 0.115 | 0.849 | | | | DMPNN-LRP | \mathcal{G} | 0.475 | 0.287 | 1.538 | 0.617 | 0.422 | 2.745 | 20.425 | 4.173 | 32.200 | 0.196 | 0.062 | 0.210 | | | | DMLMM-TVL | $ \mathcal{G}_{arphi} $ | 0.477 | 0.260 | 1.457 | 0.633 | 0.413 | 2.538 | 18.127 | 4.112 | 39.594 | 0.186 | 0.057 | 0.265 | | | - Overall, RGIN with \mathcal{G}_{arphi} outperforms other GNNs except LRP-based models. - HGT has the most prominent performance boost, indicating that the dummy nodes provide an option to drop all pattern-irrelevant messages. - Deep-LRP and DMPNN-LRP benefit from the dummy nodes in counting, but they gets the increase of matching errors due to the star typology around the dummy. #### Discussions about Expressive Power Pattern Learning Capability **Theorem I**: a k-WL graph neural network can count any patterns at most k vertices. **Theorem II**: a *T*-layer *k*-WL graph neural network cannot count any patterns with equal to or more than $(k + 1)2^T$ vertices (Chen et al., 2020). **Lemma III**: 1-WL = RGIN = RGAT < 2-WL = RGIN w/ φ = RGAT w/ φ ≤ Transformer with a dummy [CLS] token. **Corollary IV**: a *T*-layer Transformer with a dummy [CLS] token can capture any patterns with 2 tokens, and cannot capture patterns with no less than $3 \cdot 2^T$ tokens. Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph neural networks count substructures? In NeurIPS, 2020. #### Conclusion - We analyze the role of dummy nodes in the lossless edge-to-vertex transform. - We further prove that a dummy node with connections to all existing vertices can preserve the graph structure. - We design an efficient monomorphic edge-to-vertex transform and find its inverse to recover the original graph back. - We extend graph kernels and graph neural networks with dummy nodes to boost their graph/subgraph learning performance. - We discuss the capability of MPNNs and Transformers with special dummy elements. # Thanks Email: xliucr@cse.ust.hk Paper https://arxiv.org/abs/2206.08561 github.com/HKUST-KnowComp/DummyNode4GraphLearning