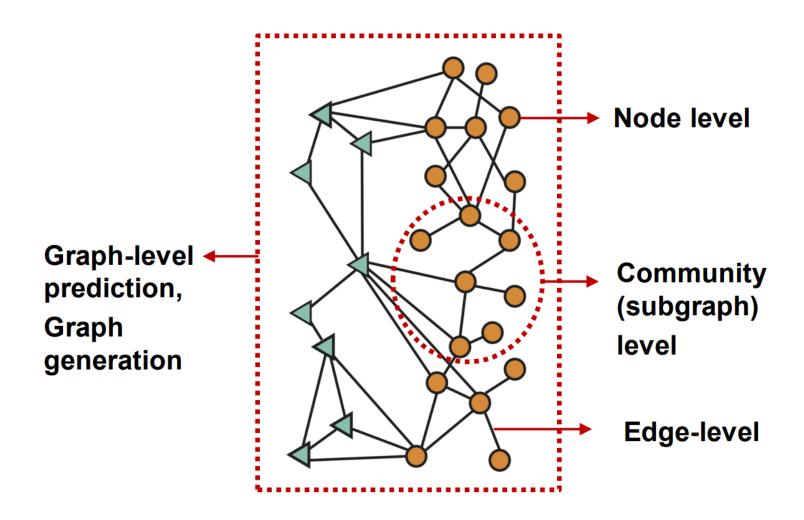
Boosting Graph Structure Learning with Dummy Nodes

Xin Liu¹, Jiayang Cheng¹, Yangqiu Song¹, Xin Jiang²

¹The Hong Kong University of Science and Technology ²Huawei Noah's Ark Lab

Graph Learning



Graph Structure Learning Algorithms

Graph Kernels

- Shortest-path Kernel (SP) (Borgwardt & Kriegel, 2005)
- Graphlet Kernel (GR) (Shervashidze et al., 2009)
- Weisfeiler-Lehman Subtree Kernel (k-WL) (Shervashidze et al., 2011)
- δ-k-dimensional Local WL algorithm (δ-LWL) (Morris et al., 2020)

Pro: expressively powerful

Cons: non-inductive, vertex-centric, and computationally expensive

Graph Structure Learning Algorithms

Graph Kernels

- Shortest-path Kernel (SP) (Borgwardt & Kriegel, 2005)
- Graphlet Kernel (GR) (Shervashidze et al., 2009)
- Weisfeiler-Lehman Subtree Kernel (k-WL) (Shervashidze et al., 2011)
- δ-k-dimensional Local WL algorithm (δ-LWL) (Morris et al., 2020)

Pro: expressively powerful

Cons: non-inductive, vertex-centric, and computationally expensive

Graph Neural Networks

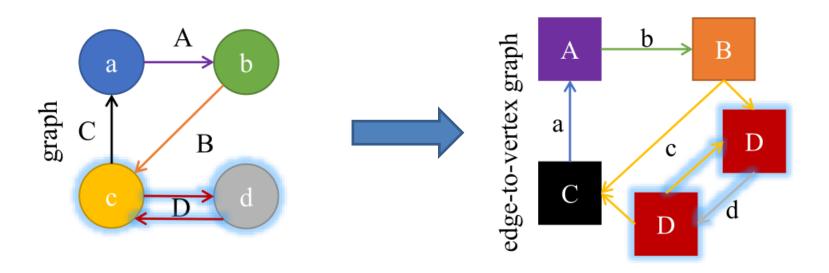
- Graph Isomorphism Network (GIN) (Xu et al., 2019) and RGIN (Liu et al., 2020)
- DiffPool (Ying et al., 2018)
- DMPNN (Liu et al., 2022)
- EASN (Bevilacqua et al., 2021)

Pro: high-efficient in parallel

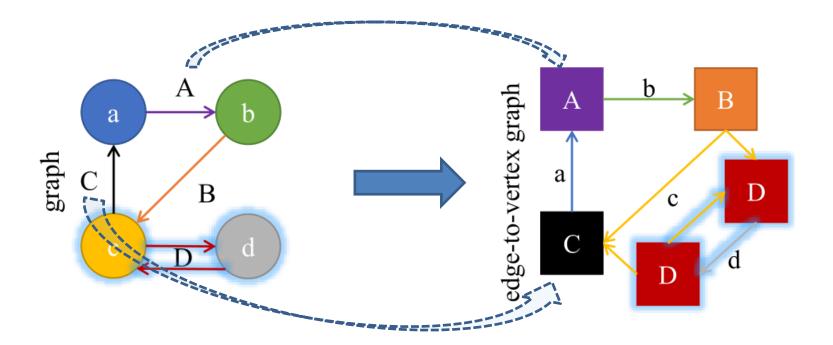
Cons: over-parameterization and over-smoothing

- Directed Connected Heterogeneous Graphs
- Similar Structures → Similar Edge Structures

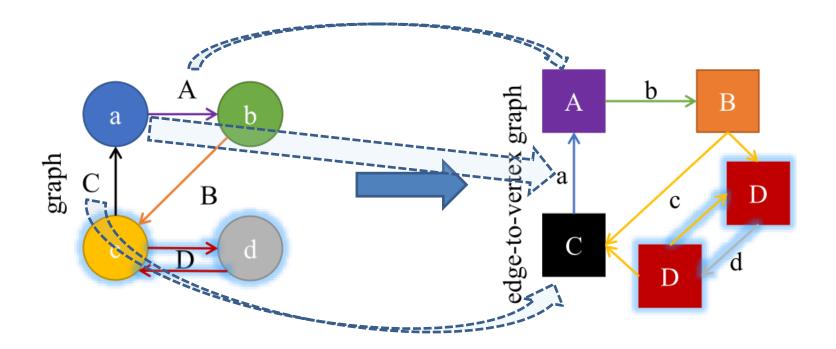
- Directed Connected Heterogeneous Graphs
- Similar Structures → Similar Edge Structures
- Edge-to-vertex Transform L
 - $-\mathcal{G} \to \mathcal{H}$: vertices/edges in the line graph \mathcal{H} correspond to edges/vertices in the original graph \mathcal{G}



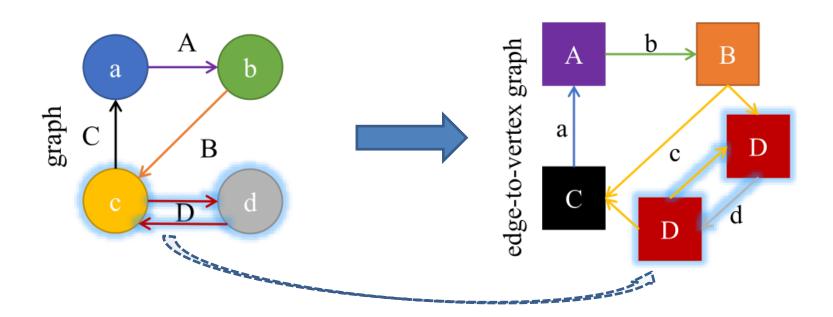
- Directed Connected Heterogeneous Graphs
- Similar Structures → Similar Edge Structures
- Edge-to-vertex Transform L
 - $-\mathcal{G} \to \mathcal{H}$: vertices/edges in the line graph \mathcal{H} correspond to edges/vertices in the original graph \mathcal{G}



- Directed Connected Heterogeneous Graphs
- Similar Structures → Similar Edge Structures
- Edge-to-vertex Transform L
 - $-\mathcal{G} \to \mathcal{H}$: vertices/edges in the line graph \mathcal{H} correspond to edges/vertices in the original graph \mathcal{G}



- Directed Connected Heterogeneous Graphs
- Similar Structures → Similar Edge Structures
- Edge-to-vertex Transform L
 - $-\mathcal{G} \to \mathcal{H}$: vertices/edges in the line graph \mathcal{H} correspond to edges/vertices in the original graph \mathcal{G}



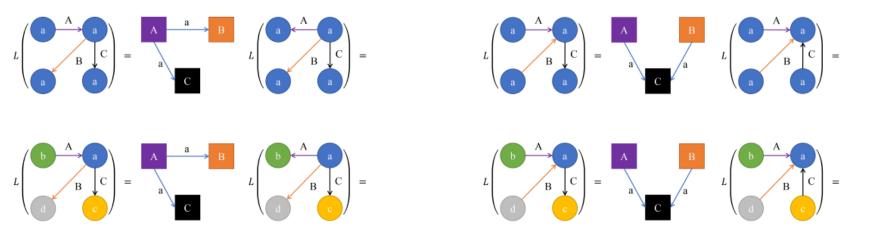
Non-injective Edge-to-vertex Transforms

Information Lossless in Edge-to-vertex Transforms

three vertices with 0 outdegree

(a) one vertex with 0 indegree, (b) one vertex with 0 indegree,

two vertices with 0 outdegree



non-injection and information lossless

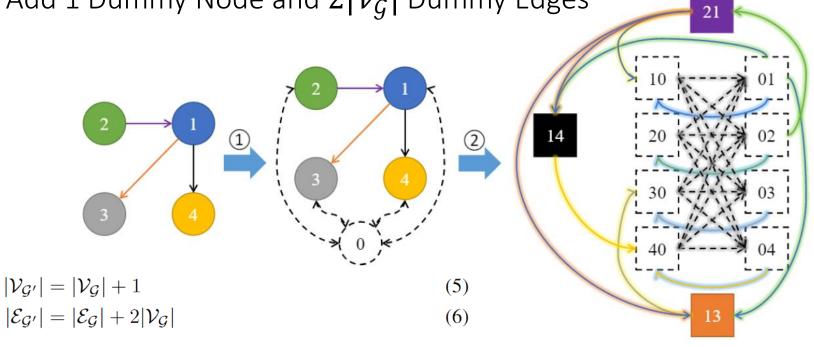
(c) two vertices with 0 indegree,

one vertex with 0 outdegree

(d) three vertices with 0 indegree, one vertex with 0 outdegree

Our Solution

Add 1 Dummy Node and $2|\mathcal{V}_{\mathcal{G}}|$ Dummy Edges



$$|\mathcal{V}_{\mathcal{H}'}| = |\mathcal{E}_{\mathcal{G}'}|$$

$$= |\mathcal{E}_{\mathcal{G}}| + 2|\mathcal{V}_{\mathcal{G}}| = |\mathcal{V}_{\mathcal{H}}| + 2|\mathcal{V}_{\mathcal{G}}|$$

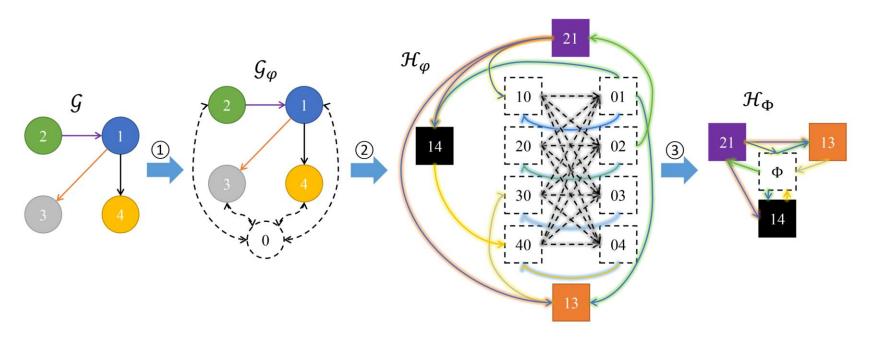
$$|\mathcal{E}_{\mathcal{H}'}| = |\mathcal{V}_{\mathcal{G}}|^2 + \sum_{v \in \mathcal{V}_{\mathcal{G}}} (d_v^- + 1) \cdot (d_v^+ + 1)$$

$$= |\mathcal{V}_{\mathcal{G}}|^2 + \sum_{v \in \mathcal{V}_{\mathcal{G}}} d_v^- \cdot d_v^+ + \sum_{v \in \mathcal{V}_{\mathcal{G}}} (d_v^- + d_v^+) + |\mathcal{V}_{\mathcal{G}}|$$

$$= |\mathcal{E}_{\mathcal{H}}| + |\mathcal{V}_{\mathcal{G}}|^2 + |\mathcal{V}_{\mathcal{G}}| + 2|\mathcal{V}_{\mathcal{E}}|$$
(8)

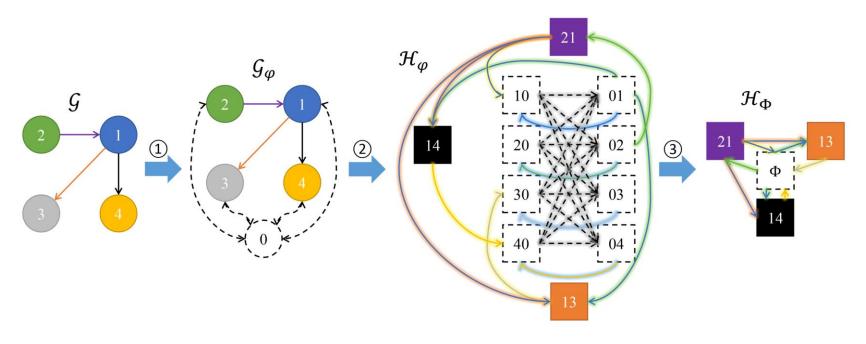
computation disaster

New Edge-to-vertex Transform



(a) edge-to-vertex transform L_{Φ}

New Edge-to-vertex Transform



(a) edge-to-vertex transform L_{Φ}

$$|\mathcal{V}_{\mathcal{H}'}| = |\mathcal{E}_{\mathcal{G}'}|$$

$$= |\mathcal{E}_{\mathcal{G}}| + 2|\mathcal{V}_{\mathcal{G}}| = |\mathcal{V}_{\mathcal{H}}| + 2|\mathcal{V}_{\mathcal{G}}|$$

$$|\mathcal{E}_{\mathcal{H}'}| = |\mathcal{V}_{\mathcal{G}}|^2 + \sum_{v \in \mathcal{V}_{\mathcal{G}}} (d_v^- + 1) \cdot (d_v^+ + 1)$$

$$= |\mathcal{V}_{\mathcal{G}}|^2 + \sum_{v \in \mathcal{V}_{\mathcal{G}}} d_v^- \cdot d_v^+ + \sum_{v \in \mathcal{V}_{\mathcal{G}}} (d_v^- + d_v^+) + |\mathcal{V}_{\mathcal{G}}|$$

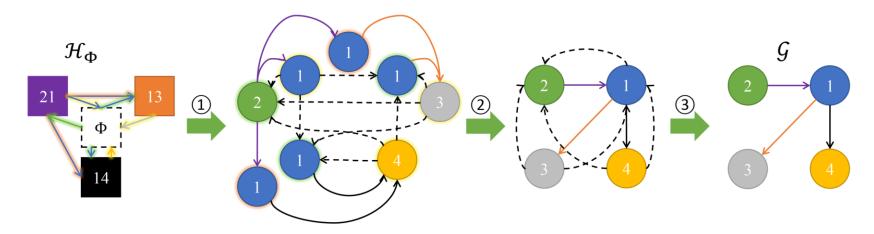
$$= |\mathcal{E}_{\mathcal{H}}| + |\mathcal{V}_{\mathcal{G}}|^2 + |\mathcal{V}_{\mathcal{G}}| + 2|\mathcal{V}_{\mathcal{E}}|$$
(8)

$$|\mathcal{V}_{\mathcal{H}'}| = |\mathcal{V}_{\mathcal{H}}| + 1 \tag{10}$$

$$|\mathcal{E}_{\mathcal{H}'}| = |\mathcal{E}_{\mathcal{H}}| + 2|\mathcal{V}_{\mathcal{E}}| \tag{11}$$

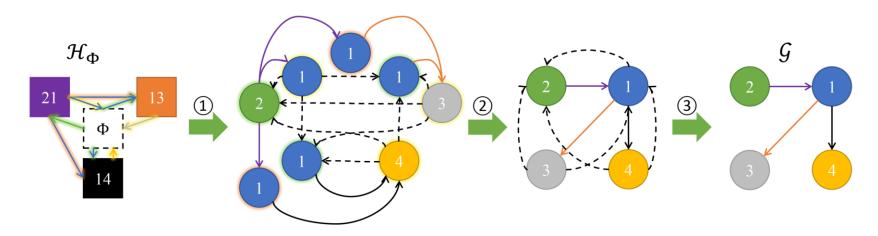
efficient and injective

Inverse of New Edge-to-vertex Transform



(b) inverse edge-to-vertex transform L_{Φ}^{-1}

Inverse of New Edge-to-vertex Transform

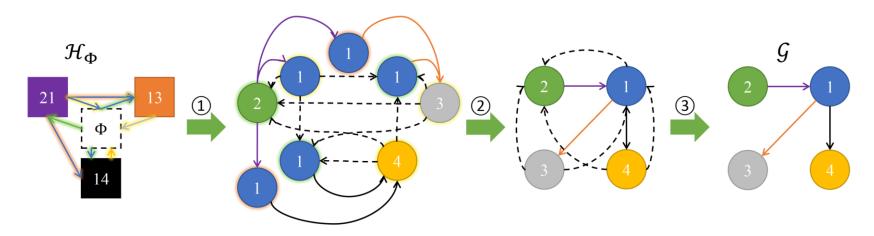


(b) inverse edge-to-vertex transform L_{Φ}^{-1}

Theorem 3.4. For any \mathcal{H}_{Φ} transformed by L_{Φ} such that $\mathcal{H}_{\Phi} = L_{\Phi}(\mathcal{G})$, L_{Φ}^{-1} can always transform \mathcal{H}_{Φ} back to \mathcal{G} , i.e., $L_{\Phi}^{-1}(L_{\Phi}(\mathcal{G})) = \mathcal{G}$

surjective and elegant

Inverse of New Edge-to-vertex Transform



(b) inverse edge-to-vertex transform L_{Φ}^{-1}

Theorem 3.4. For any \mathcal{H}_{Φ} transformed by L_{Φ} such that $\mathcal{H}_{\Phi} = L_{\Phi}(\mathcal{G})$, L_{Φ}^{-1} can always transform \mathcal{H}_{Φ} back to \mathcal{G} , i.e., $L_{\Phi}^{-1}(L_{\Phi}(\mathcal{G})) = \mathcal{G}$

surjective and elegant

Proposition 3.6. L_{Φ} is a monomorphism. Corollary 3.7. Isomorphisms hold after L_{Φ} .

Corollary 3.8. If a function h is permutation-invariant, then $h \circ L_{\Phi}$ is also permutation-invariant.

Extensions of Graph Kernel Functions

Conventional Graph Kernels

$$k(\mathcal{G}_1, \mathcal{G}_2) = \langle h(\mathcal{G}_1), h(\mathcal{G}_2) \rangle$$

where k is a kernel function to measure graph similarity, and h is the permutation-invariant function from graph space to Hilbert space.

Extensions of Graph Kernel Functions

Conventional Graph Kernels

$$k(\mathcal{G}_1, \mathcal{G}_2) = \langle h(\mathcal{G}_1), h(\mathcal{G}_2) \rangle$$

where k is a kernel function to measure graph similarity, and h is the permutation-invariant function from graph space to Hilbert space.

Graph Kernels with Dummy Nodes and Edges

$$k_{\varphi}(\mathcal{G}_{1}, \mathcal{G}_{2}) = k(\mathcal{G}_{1}, \mathcal{G}_{2}) + k(\mathcal{G}_{\varphi_{1}}, \mathcal{G}_{\varphi_{2}})$$
$$= \langle h(\mathcal{G}_{1}), h(\mathcal{G}_{2}) \rangle + \langle h(\mathcal{G}_{\varphi_{1}}), h(\mathcal{G}_{\varphi_{2}}) \rangle,$$

Graph Kernels with Edge-to-vertex Transforms

$$k_{\Phi}(\mathcal{G}_{1}, \mathcal{G}_{2}) = k(\mathcal{G}_{1}, \mathcal{G}_{2}) + k(\mathcal{H}_{\Phi_{1}}, \mathcal{H}_{\Phi_{2}})$$

= $\langle h(\mathcal{G}_{1}), h(\mathcal{G}_{2}) \rangle + \langle h(L_{\Phi}(\mathcal{G}_{1})), h(L_{\Phi}(\mathcal{G}_{2})) \rangle,$

enforce the kernel functions to pay more attention to original structures

Extensions of Graph Neural Networks

Conventional Message Passing Framework

$$\begin{aligned} \boldsymbol{\Delta}_{v}^{(t+1)} &= Aggregate(\{Message(\boldsymbol{x}_{v}^{(t)}, \boldsymbol{x}_{u}^{(t)}, \boldsymbol{y}_{(u,v)}) | u \in \mathcal{N}_{v}\}), \\ \boldsymbol{x}_{v}^{(t+1)} &= Update(\boldsymbol{x}_{v}, \boldsymbol{\Delta}_{v}^{(t+1)}), \end{aligned}$$

where $\boldsymbol{x}_v^{(t)}$ is the hidden state of vertex v at the t-th layer network, \mathcal{N}_v is v's neighbor collection, $\boldsymbol{y}_{(u,v)}^{(t)}$ is the edge tensor for (u,v), $\boldsymbol{\Delta}_v^{(t+1)}$ is the aggregated message from neighbors.

Extensions of Graph Neural Networks

Conventional Message Passing Framework

$$\boldsymbol{\Delta}_{v}^{(t+1)} = Aggregate(\{Message(\boldsymbol{x}_{v}^{(t)}, \boldsymbol{x}_{u}^{(t)}, \boldsymbol{y}_{(u,v)}) | u \in \mathcal{N}_{v}\}),$$

$$\boldsymbol{x}_{v}^{(t+1)} = Update(\boldsymbol{x}_{v}, \boldsymbol{\Delta}_{v}^{(t+1)}),$$

where $\boldsymbol{x}_v^{(t)}$ is the hidden state of vertex v at the t-th layer network, \mathcal{N}_v is v's neighbor collection, $\boldsymbol{y}_{(u,v)}^{(t)}$ is the edge tensor for (u,v), $\boldsymbol{\Delta}_v^{(t+1)}$ is the aggregated message from neighbors.

- Graph Neural Networks with Dummy Nodes and Edges simply replacing the input graph \mathcal{G} with \mathcal{G}_{φ} , i.e., introducing a new x_{φ} and each neighbor collection except \mathcal{N}_{φ} adds the dummy node φ .
- Graph Neural Networks with Edge-to-vertex Transforms simply replacing the input graph \mathcal{G} with \mathcal{H}_{Φ} , i.e., performing edge-centric message passing in the line graph.

Experiments on Graph Classification

Classification error estimation: accuracy

Models		\mathcal{G}	PROTEINS ${\cal G}_{arphi}$	\mathcal{H}_{Φ}	${\cal G}$	D&D ${\cal G}_{arphi}$	${\cal H}_\Phi$	${\cal G}$	NCI109 \mathcal{G}_{arphi}	${\cal H}_\Phi$	$\mathcal G$	\mathcal{G}_{arphi}	\mathcal{H}_{Φ}
	SP	73.48±3.93	74.20 ± 3.23	73.39±3.04	80.50±3.6	5 79.58±3.91	81.51±3.91	73.65 ± 2.34	73.84 ± 2.07	74.11±2.22	74.18±1.67	74.70±1.74	74.40±1.74
l	GR	70.45 ± 6.54	74.20 ± 4.44	73.66 ± 4.00	8.82 ± 3.8	3 79.66±5.18	78.82 ± 3.87	66.45 ± 2.14	72.46 ± 2.51	71.81 ± 2.69	65.16 ± 2.30	73.04 ± 1.81	71.07 ± 1.47
	WLOA	72.59 ± 2.46	73.84 ± 3.29	74.02 ± 3.47	'9.24±3.6	79.24±3.81	78.57 ± 3.59	85.43 ± 1.51	84.61 ± 1.52	84.81 ± 1.11	85.96 ± 1.82	86.33 ± 1.77	86.37 ± 1.75
Kernel	1-WL	71.79 ± 4.52	73.30 ± 4.14	73.48 ± 5.02	80.50±4.4	81.26±4.08	80.42 ± 3.85	85.54 ± 1.34	83.74 ± 0.94	84.37 ± 1.02	85.13 ± 1.69	84.87 ± 1.77	85.38 ± 1.21
Kerner	2-WL	74.11±5.19	75.27 ± 4.67	OOM	OOM	OOM	OOM	68.09 ± 1.55	68.38 ± 1.21	72.24 ± 1.85	67.71 ± 1.33	67.49 ± 1.45	69.00 ± 2.34
İ	δ -2-WL	74.20 ± 4.98	74.82 ± 4.16	OOM	OOM	OOM	OOM	68.00 ± 1.94	68.26 ± 1.59	70.34 ± 1.87	67.32 ± 1.34	67.37 ± 1.40	69.20 ± 2.18
	δ -2-LWL	73.66 ± 5.10	74.37 ± 3.34	74.11 ± 3.72	7.06±5.9) 77.31±5.98	79.41 ± 5.28	84.20 ± 1.44	83.12 ± 1.34	83.82 ± 1.06	85.40 ± 1.28	84.06 ± 1.54	85.40 ± 1.51
	δ -2-LWL $^+$	78.12±4.75	83.48 ± 4.34	84.55 ± 3.62	7.14 ± 6.0	77.56±6.30	79.58 ± 6.24	88.79 ± 0.94	89.42 ± 1.37	88.57±0.97	91.92±1.93	93.67 ± 0.84	91.65 ± 1.96
	GraphSAGE	E 73.48±5.60	73.93 ± 5.68	-	7.73±4.6	78.91±4.59	-	73.38 ± 2.68	74.13 ± 2.30	-	73.82 ± 2.17	74.31 ± 2.27	-
	GCN	72.95 ± 3.88	74.02 ± 3.82	-	2.77 ± 4.6	2 80.76 ±5.37	-	50.34 ± 2.69	51.67 ± 5.52	-	61.75±11.1	68.95 ± 10.8	-
	GIN	73.84 ± 4.46	74.11 ± 4.12	-	6.97±3.8	77.65±3.46	-	72.61 ± 2.37	73.82 ± 2.50	-	73.50 ± 1.80	75.16 ± 1.49	-
Network	RGCN	73.30 ± 4.90	74.98 ± 4.50	75.09 \pm 4.03	9.16±9.9	7 69.24± 10.0	78.47 ± 5.24	50.29 ± 2.08	51.52 ± 4.37	71.71 ± 7.59	52.75 ± 4.75	57.27 ± 9.49	74.04 ± 1.15
	RGIN	68.75 ± 6.59	70.54 ± 5.03	74.20 ± 2.93	7.65±4.6	2 78.15±4.60	77.73±4.42	64.20 ± 2.85	64.52 ± 2.58	75.43 \pm 3.50	66.11 ± 1.77	66.11 ± 1.69	76.18 ± 2.03
	DiffPool	75.62 ± 5.11	75.98 ± 3.89	-	1.41 ± 5.1	80.25 ± 4.69	-	75.29 ± 1.85	75.44 ± 1.90	-	76.62 ± 1.93	77.08 ± 1.33	-
	HGP-SL	71.25 ± 7.13	74.46 ± 3.77		4.62 ± 3.1) 82.07 ±2.11	-	74.78 ± 2.37	74.32 ± 1.84	-	74.94 ± 0.88	76.08 ± 1.94	
A	werage	73.13±2.10	74.77±2.60	75.31±3.53	7.20±3.2	5 78.59±3.05	79.31±1.13	72.07±11.20	72.62 ± 10.53	77.72±6.51	73.48±10.1	75.10±8.98	78.27±7.77

- We observe consistent performance improvement after adding dummy nodes $(\mathcal{G}_{m{arphi}})$ for most classifiers.
- We also see the further improvement on average after using \mathcal{H}_{Φ} .

Experiments on Graph Classification

Classification error estimation: accuracy

	/ 1 - 1 -		PROTEINS		D&D				NCI109		NCI1		
1	Models	$ \mathcal{G} $	${\cal G}_{arphi}$	${\cal H}_\Phi$	${\cal G}$	${\cal G}_{arphi}$	${\cal H}_\Phi$	${\cal G}$	${\cal G}_{\varphi}$	${\cal H}_\Phi$	${\cal G}$	${\cal G}_{\varphi}$	\mathcal{H}_{Φ}
	SP	$ 73.48\pm3.93 $	74.20±3.23	73.39 ± 3.04	80.50 ± 3.66	79.58±3.91	81.51±3.91	73.65 ± 2.34	73.84 ± 2.07	74.11±2.22	74.18 ± 1.67	74.70±1.74	74.40±1.74
	GR	$ 70.45\pm6.54 $	74.20 ± 4.44	73.66 ± 4.00	78.82 ± 3.83	79.66 ± 5.18	378.82 ± 3.87	66.45 ± 2.14	72.46 ± 2.51	71.81 ± 2.69	65.16 ± 2.30	73.04 ± 1.81	71.07 ± 1.47
	WLOA	$ 72.59\pm2.46 $	73.84 ± 3.29	74.02 ± 3.47	79.24 ± 3.61	79.24 ± 3.81	78.57 ± 3.59	85.43 ± 1.51	84.61 ± 1.52	84.81 ± 1.11	85.96 ± 1.82	86.33 ± 1.77	86.37 ± 1.75
Kernel	1-WL	$ 71.79\pm 4.52 $	73.30 ± 4.14	73.48 ± 5.02	80.50 ± 4.43	81.26 ± 4.08	80.42 ± 3.85	85.54 ± 1.34	83.74 ± 0.94	84.37 ± 1.02	85.13 ± 1.69	84.87 ± 1.77	85.38 ± 1.21
Keillei	2-WL	74.11±5.19	75.27 ± 4.67	OOM	OOM	OOM	OOM	68.09 ± 1.55	68.38 ± 1.21	72.24 ± 1.85	67.71 ± 1.33	67.49 ± 1.45	69.00 ± 2.34
	δ -2-WL	74.20 ± 4.98	74.82 ± 4.16	OOM	OOM	OOM	OOM	68.00 ± 1.94	68.26 ± 1.59	70.34 ± 1.87	67.32 ± 1.34	67.37 ± 1.40	69.20 ± 2.18
	δ -2-LWL	$ 73.66\pm 5.10 $	74.37 ± 3.34	74.11 ± 3.72	77.06 ± 5.99	77.31 ± 5.98	379.41 ± 5.28	84.20 ± 1.44	83.12 ± 1.34	83.82 ± 1.06	85.40 ± 1.28	84.06 ± 1.54	85.40 ± 1.51
	δ -2-LWL $^+$	78.12 ± 4.75	83.48 ± 4.34	84.55 ± 3.62	77.14 ± 6.05	77.56 ± 6.30	79.58±6.24	88.79 ± 0.94	89.42 ± 1.37	88.57 ± 0.97	91.92 ± 1.93	93.67 ± 0.84	91.65 ± 1.96
	GraphSAGE	173.48 ± 5.66	73 93+5 68	_	77 73+4 66	78 91+4 50) _	73.38 ± 2.68	74.13 ± 2.30	_	73.82 ± 2.17	7431 + 227	
	GCN	72.95 ± 3.88			72.77 ± 4.62			50.34 ± 2.69	51.67 ± 5.52		61.75 ± 11.1		-
Network	RGCN RGIN	1						50.29±2.08 64.20±2.85					
	Difficult	75.02 \(\perps_{0.17}\)	73.70 13.07	-	01.41 _ 3.11	00.25±4.05	-	75.29 ± 1.05	/3.44±1.90	-	70.02 ± 1.93	77.00±1.55	
	HGP-SL	71.25 ± 7.13	74.46 ± 3.77	-	74.62 ± 3.19	82.07 ± 2.11	l -	74.78 ± 2.37	74.32 ± 1.84	-	74.94 ± 0.88	76.08 ± 1.94	
\overline{A}	verage	73.13 ± 2.10	74.77 ± 2.60	75.31 ± 3.53	77.20 ± 3.26	78.59±3.05	5 79.31±1.13	72.07 ± 11.20	72.62 ± 10.53	77.72±6.51	73.48±10.16	75.10±8.98	78.27 ± 7.77

- We observe consistent performance improvement after adding dummy nodes (\mathcal{G}_{ω}) for most classifiers.
- We also see the further improvement on average after using \mathcal{H}_{Φ} .
- Kernels with the 2-order structures nearly surpass the 1-order kernels and 1-WL graph neural networks.
- Accuracies of GNNs get boosted again when the input changes from $\mathcal{G}_{m{arphi}}$ to $\mathcal{H}_{m{\Phi}}$.

Experiments on Subgraph Isomorphisms

counting error estimation: RMSE, MAE matching error estimation: graph edit distance

Models				Homog	geneous		r		Heterogeneous						
		E	Erdős-Ren	ıyi		Regular			Complex	X.	N N	MUTAG			
		RMSE	MAE	GED	RMSE	MAE	GED	RMSE	MAE	GED	RMSE	MAE	GED		
RGCN	\mathcal{G}	9.386	5.829	28.963	14.789	9.772	70.746	28.601	9.386	64.122	0.777	0.334	1.441		
RUCIN	\mathcal{G}_{\wp}	7.764	4.654	24.438	14.077	9.511	71.393	26.389	7.110	55.600	0.534	0.191	1.052		
DCIN	\mathcal{G}	6.063	3.712	22.155	13.554	8.580	56.353	20.893	4.411	56.263	0.273	0.082	0.329		
RGIN	\mathcal{G}_{α}	4.769	2.898	15.219	10.871	6.874	43.537	19.436	3.846	41.337	0.193	0.064	0.277		
HCT	\mathcal{G}	24.376	14.630	104.000	26.713	17.482	191.674	34.055	8.336	70.080	1.317	0.526	3.644		
HGT	\mathcal{G}_{arphi}	5.969	3.691	23.401	13.813	8.813	64.926	20.841	4.707	47.409	0.876	0.345	2.973		
CompGCN	\mathcal{G}	6.706	4.274	25.548	14.174	9.685	64.677	22.287	5.127	57.082	0.300	0.085	0.278		
Compociv	\mathcal{G}_{arphi}	4.981	3.019	16.263	11.450	7.443	46.802	20.786	4.048	56.269	0.321	0.089	0.262		
DMPNN	\mathcal{G}	5.330	3.308	23.411	11.980	7.832	56.222	18.974	3.992	56.933	0.232	0.088	0.320		
DIVITIVIN	$ \mathcal{G}_{arphi} $	5.220	3.130	23.285	11.259	7.136	49.179	18.885	3.892	73.161	0.259	0.101	0.623		
Daan I DD	\mathcal{G}	0.794	0.436	2.571	1.373	0.788	5.432	27.490	5.850	56.772	0.260	0.094	0.437		
Deep-LRP	\mathcal{G}_{arphi}	0.710	0.402	2.218	1.145	0.718	4.611	24.458	5.094	57.398	0.356	0.115	0.849		
DMPNN-LRP	\mathcal{G}	0.475	0.287	1.538	0.617	0.422	2.745	20.425	4.173	32.200	0.196	0.062	0.210		
DMPNN-LKF	$ \mathcal{G}_{arphi} $	0.477	0.260	1.457	0.633	0.413	2.538	18.127	4.112	39.594	0.186	0.057	0.265		

- Overall, RGIN with \mathcal{G}_{arphi} outperforms other GNNs except LRP-based models.
- HGT has the most prominent performance boost, indicating that the dummy nodes provide an option to drop all pattern-irrelevant messages.

Experiments on Subgraph Isomorphisms

counting error estimation: RMSE, MAE matching error estimation: graph edit distance

				Homoş	geneous				Heterogeneous						
Models		E	Erdős-Ren	ıyi		Regular		(Complex	K	N	MUTAG	1		
		RMSE	MAE	GED	RMSE	MAE	GED	RMSE	MAE	GED	RMSE	MAE	GED		
RGCN	\mathcal{G}	9.386	5.829	28.963	14.789	9.772	70.746	28.601	9.386	64.122	0.777	0.334	1.441		
ROCIV	\mathcal{G}_{arphi}	7.764	4.654	24.438	14.077	9.511	71.393	26.389	7.110	55.600	0.534	0.191	1.052		
RGIN	\mathcal{G}	6.063	3.712	22.155	13.554	8.580	56.353	20.893	4.411	56.263	0.273	0.082	0.329		
KUIN	$ \mathcal{G}_{arphi} $	4.769	2.898	15.219	10.871	6.874	43.537	19.436	3.846	41.337	0.193	0.064	0.277		
HGT	\mathcal{G}	24.376	14.630	104.000	26.713	17.482	191.674	34.055	8.336	70.080	1.317	0.526	3.644		
пот	$ \mathcal{G}_{arphi} $	5.969	3.691	23.401	13.813	8.813	64.926	20.841	4.707	47.409	0.876	0.345	2.973		
CompGCN	\mathcal{G}	6.706	4.274	25.548	14.174	9.685	64.677	22.287	5.127	57.082	0.300	0.085	0.278		
Compoch	$ \mathcal{G}_{arphi} $	4.981	3.019	16.263	11.450	7.443	46.802	20.786	4.048	56.269	0.321	0.089	0.262		
DMPNN	\mathcal{G}	5.330	3.308	23.411	11.980	7.832	56.222	18.974	3.992	56.933	0.232	0.088	0.320		
DIMILIM	\mathcal{G}_{ω}	5.220	3.130	23.285	11.259	7.136	49.179	18.885	3.892	73.161	0.259	0.101	0.623		
Daam I DD	\mathcal{G}	0.794	0.436	2.571	1.373	0.788	5.432	27.490	5.850	56.772	0.260	0.094	0.437		
Deep-LRP	\mathcal{G}_{arphi}	0.710	0.402	2.218	1.145	0.718	4.611	24.458	5.094	57.398	0.356	0.115	0.849		
DMPNN-LRP	\mathcal{G}	0.475	0.287	1.538	0.617	0.422	2.745	20.425	4.173	32.200	0.196	0.062	0.210		
DMLMM-TVL	$ \mathcal{G}_{arphi} $	0.477	0.260	1.457	0.633	0.413	2.538	18.127	4.112	39.594	0.186	0.057	0.265		

- Overall, RGIN with \mathcal{G}_{arphi} outperforms other GNNs except LRP-based models.
- HGT has the most prominent performance boost, indicating that the dummy nodes provide an option to drop all pattern-irrelevant messages.
- Deep-LRP and DMPNN-LRP benefit from the dummy nodes in counting, but they
 gets the increase of matching errors due to the star typology around the dummy.

Discussions about Expressive Power

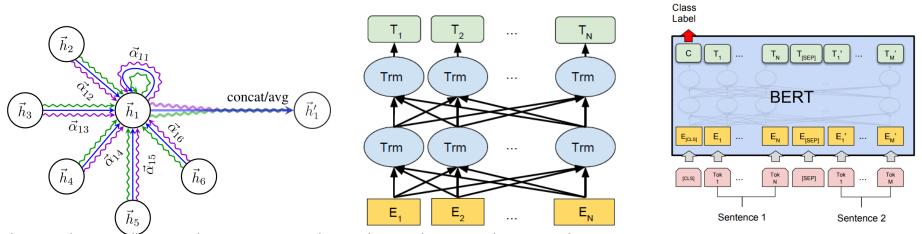
Pattern Learning Capability

Theorem I: a k-WL graph neural network can count any patterns at most k vertices.

Theorem II: a *T*-layer *k*-WL graph neural network cannot count any patterns with equal to or more than $(k + 1)2^T$ vertices (Chen et al., 2020).

Lemma III: 1-WL = RGIN = RGAT < 2-WL = RGIN w/ φ = RGAT w/ φ ≤ Transformer with a dummy [CLS] token.

Corollary IV: a *T*-layer Transformer with a dummy [CLS] token can capture any patterns with 2 tokens, and cannot capture patterns with no less than $3 \cdot 2^T$ tokens.



Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph neural networks count substructures? In NeurIPS, 2020.

Conclusion

- We analyze the role of dummy nodes in the lossless edge-to-vertex transform.
- We further prove that a dummy node with connections to all existing vertices can preserve the graph structure.
- We design an efficient monomorphic edge-to-vertex transform and find its inverse to recover the original graph back.
- We extend graph kernels and graph neural networks with dummy nodes to boost their graph/subgraph learning performance.
- We discuss the capability of MPNNs and Transformers with special dummy elements.

Thanks

Email: xliucr@cse.ust.hk

Paper

https://arxiv.org/abs/2206.08561



github.com/HKUST-KnowComp/DummyNode4GraphLearning