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Setup:  
 - a set of m candidates C 
 - each voter ranks candidates from best to worst 
- top(v): most preferred candidate of voter v 

Definition:  
A vote v is single-peaked (SP) wrt an ordering < of candidates 
(axis) if it holds that:  

-  if top(v) < d < e, v prefers d to e 
- if a < b < top(v), v prefers b to a
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For a set of votes, we can decide in linear time whether it 
is single-peaked (Doignon et Falmagne, 1994)… 

…but if there is a unique axis <, what can we 
say about how much information we have to 
see before we learn it exactly?
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