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Local interpretation (for specific input x): vary features

>
» ML: Saliency <> Coop. Game Theory: Surplus Attribution
» Characteristic function: v: 2[4 — R
» Prime Implicant Explanation? (mostly for v : 219 — {0,1})
S* =argmin|S| st v(S)=v([d])
Scld]

» Shapley Values® (linear, efficient, symmetric, null-player)

b= 3 ((PFUL) - v(PT).

" ren([d])

» Problem: We don't have characteristic functions!

1) “Explainable ai: A review of machine learning interpretability methods”, Linardatos et al. [7] 2) “A symbolic approach to explaining bayesian network classifiers”, Shih et al. [13] 3) “A value for
n-person games” Shapley [12]
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» Change off-manifold behaviour to manipulate:
Gradient, Integrated gradients®3, LRP2*7,
LIME3®, DeepShap®?®, Grad-Cam’,

Shapley-based®, Counterfactual explanations®, ™ Idea: Directly train a characteristic function!
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Information-Performance Comparison
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» So far works only for certain abstract games (Connect Four, Hex, Go, ...)

= Filter out illegal moves with model-based approaches (see e.g. AlphaGo)

» Further extension to real-world tasks (high-dimensional, high redundancy) is challenging
= Our approach is should be used primarily for evaluation of saliency methods

» Shapley sampling suffered from unstable policy layer for large hidden information

= Train value function instead

= Q-Learning could be a more stable approach

ICML 2022 (Stephan Waldchen) 8/15



Conclusion:

ICML 2022 (Stephan Waldchen) 9/15


mailto:waeldchen@zib.de

Conclusion:

» Interpretability relies on a good model of the data distribution

ICML 2022 (Stephan Waldchen) 9/15


mailto:waeldchen@zib.de

Conclusion:

» Interpretability relies on a good model of the data distribution

» We can design proxy-task where we know the distribution
via abstract games with missing information

ICML 2022 (Stephan Waldchen) 9/15


mailto:waeldchen@zib.de

Conclusion:

» Interpretability relies on a good model of the data distribution

» We can design proxy-task where we know the distribution
via abstract games with missing information

» Use these tasks to evaluate saliency methods without going off-manifold

ICML 2022 (Stephan Waldchen) 9/15


mailto:waeldchen@zib.de

Conclusion:

» Interpretability relies on a good model of the data distribution

» We can design proxy-task where we know the distribution
via abstract games with missing information

» Use these tasks to evaluate saliency methods without going off-manifold

Thank You!

ICML 2022 (Stephan Waldchen) 9/15


mailto:waeldchen@zib.de

Conclusion:

» Interpretability relies on a good model of the data distribution

» We can design proxy-task where we know the distribution
via abstract games with missing information

» Use these tasks to evaluate saliency methods without going off-manifold

Thank You!

§ Contact: waeldchen®@zib.de

B Paper: Training Characteristic Functions with Reinforcement Learning:
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Appendix




Ground Truth Comparison: Winning Move

DeepShap Guided Gradient LRP-¢  Deep Smooth Random Shapley FW
Backprop Taylor  Grad Sampling
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Tournament: Standard Deviation and lllegal Move Rate
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