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How do we interpret black-box Functions?

▶ Core idea: Probe black-box function with different inputs

▶ Local interpretation (for specific input x): vary features

▶ ML: Saliency ↔ Coop. Game Theory: Surplus Attribution

▶ Characteristic function: ν : 2[d ] → R
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How do we interpret black-box Functions?

▶ Core idea: Probe black-box function with different inputs

▶ Local interpretation (for specific input x): vary features

▶ ML: Saliency ↔ Coop. Game Theory: Surplus Attribution

▶ Characteristic function: ν : 2[d ] → R

Φx y

ICML 2022 (Stephan Wäldchen) 1/15
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How do we interpret black-box Functions?

▶ Core idea: Probe black-box function with different inputs

▶ Local interpretation (for specific input x): vary features

▶ ML: Saliency ↔ Coop. Game Theory: Surplus Attribution

▶ Characteristic function: ν : 2[d ] → R

LIME saliency1

Source: https://clearcode.cc/blog/game-theory-attribution/

1) “Explainable ai: A review of machine learning interpretability methods”, Linardatos et al. [7]

2) “A symbolic approach to explaining bayesian network classifiers”, Shih et al. [13] 3) “A value for

n-person games” Shapley [12]

ICML 2022 (Stephan Wäldchen) 1/15
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▶ Prime Implicant Explanation2 (mostly for ν : 2[d ] → {0, 1})

S∗ = argmin
S⊂[d ]

|S | s.t. ν(S) = ν([d ])

▶ Shapley Values3 (linear, efficient, symmetric, null-player)

ϕi =
1

d!

∑
π∈Π([d ])

(ν(Pπ
i ∪ {i})− ν(Pπ

i )).

▶ Problem: We don’t have characteristic functions!
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Interpretations Rely on a Model of the Data Manifold

▶ Approach from Lundberg et al1:

νΦ,x(S) = Ey[Φ(y) | yS = xS ] =

∫
Φ(x)dP[xSc |xS ].

▶ Needs good model of P[xSc |xS ]!
▶ Most methods simply approximate with baseline

values (sometimes layer-wise)

▶ Change off-manifold behaviour to manipulate:

Gradient, Integrated gradients2,3, LRP2,4,7,

LIME3,5, DeepShap3,5, Grad-Cam7,

Shapley-based6, Counterfactual explanations8,
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Setup: Connect Four with hidden colour information

▶ Abstract Games: complex, yet low-dimensional

▶ Every turn t: ph ∼ U([0, pmax
h ])

▶ Hide ⌊pht⌋ colour features at random

▶ Train agent with Proximal Policy Optimisation (PPO)1,2

♦ FI: Full Information.

♦ PI-50: with ph ∼ U([0, 0.5])
♦ PI-100: with ph ∼ U([0, 1])
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Interpretability with Characteristic Functions

▶ Let t ∈ [42]

, x ∈ [0, 1]3×6×7, S ∈ [t] and let x(S) be state with colour feature on Sc hidden

▶ Let furthermore a∗ = argmaxa P(a ; x)

▶ We define νpol : 2[t] → [0, 1] and νval : 2[t] → [−1, 1] as

νpol(S) = P(a∗; x(S)) and νval(S) = V (x(S)).

▶ We can approximate the Shapley sum by sampling from U(Π([t])):

ϕi =
1

t!

∑
π∈Π([t])sample

(ν(Pπ
i ∪ {i})− ν(Pπ

i )).

▶ P
[∣∣ϕi − ϕ̄i

∣∣ ≤ ϵ
]
≥ 1− δ → (0.01, 0.01)-approximation ≈26 500 samples (Hoeffding)

▶ Calculate PIE with Frank-Wolfe optimiser solving1 convex relaxation of

S∗ = argmin
|S|≤⌊pht⌋

(ν([t])− ν(S))2.

1) “Deep Neural Network Training with Frank-Wolfe”, Pokutta et al. [10]
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Example Saliencies for different Methods
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Information-Performance Comparison
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Round-Robin Tournament
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0.737 0.747 0.706 0.782 0.834 0.774 0.887 0.935

0.263 0.498 0.499 0.573 0.609 0.567 0.742 0.871

0.254 0.502 0.496 0.579 0.616 0.616 0.765 0.861

0.294 0.501 0.503 0.587 0.604 0.586 0.742 0.848

0.217 0.427 0.421 0.413 0.512 0.502 0.686 0.819

0.167 0.392 0.385 0.397 0.487 0.472 0.677 0.810

0.226 0.433 0.384 0.414 0.497 0.528 0.681 0.805

0.113 0.259 0.235 0.258 0.314 0.323 0.319 0.676

0.065 0.130 0.140 0.152 0.181 0.190 0.195 0.324
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Round-Robin Tournament

Masker1 Player1

Masker2Player2
In
pu
t

De
ep
Sh
ap

Gu
id
ed

Ba
ck
pr
op FW

Gr
ad
ie
nt

LR
P-

De
ep

Ta
yl
or

Sm
oo
th

Gr
ad

Ra
nd
om

In
pu
t

De
ep
Sh
ap

Gu
id
ed

Ba
ck
pr
op

FW

Gr
ad
ie
nt

LR
P-

De
ep

Ta
yl
or

Sm
oo
th

Gr
ad

Ra
nd
om

0.737 0.747 0.706 0.782 0.834 0.774 0.887 0.935

0.263 0.498 0.499 0.573 0.609 0.567 0.742 0.871

0.254 0.502 0.496 0.579 0.616 0.616 0.765 0.861

0.294 0.501 0.503 0.587 0.604 0.586 0.742 0.848

0.217 0.427 0.421 0.413 0.512 0.502 0.686 0.819

0.167 0.392 0.385 0.397 0.487 0.472 0.677 0.810

0.226 0.433 0.384 0.414 0.497 0.528 0.681 0.805

0.113 0.259 0.235 0.258 0.314 0.323 0.319 0.676

0.065 0.130 0.140 0.152 0.181 0.190 0.195 0.324

ICML 2022 (Stephan Wäldchen) 7/15



Limitations and Outlook

▶ So far works only for certain abstract games (Connect Four, Hex, Go, ...)

⇒ Filter out illegal moves with model-based approaches (see e.g. AlphaGo)

▶ Further extension to real-world tasks (high-dimensional, high redundancy) is challenging

⇒ Our approach is should be used primarily for evaluation of saliency methods

▶ Shapley sampling suffered from unstable policy layer for large hidden information

⇒ Train value function instead

⇒ Q-Learning could be a more stable approach
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Conclusion:

▶ Interpretability relies on a good model of the data distribution

▶ We can design proxy-task where we know the distribution

via abstract games with missing information

▶ Use these tasks to evaluate saliency methods without going off-manifold

Thank You!

Contact: waeldchen@zib.de

Paper: Training Characteristic Functions with Reinforcement Learning:

XAI-methods play Connect Four, S Wäldchen, F Huber, S Pokutta

arXiv preprint arXiv:2202.11797
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Appendix



Ground Truth Comparison: Winning Move
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Tournament: Standard Deviation and Illegal Move Rate
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0.0188 0.0173 0.0201 0.0204 0.0144 0.0284 0.0204 0.0196

0.0199 0.0173 0.0192 0.0155 0.0202 0.0288 0.0229 0.0097

0.0233 0.0201 0.0192 0.0217 0.0135 0.0263 0.0185 0.0091

0.0225 0.0204 0.0155 0.0217 0.0146 0.0173 0.0233 0.0152

0.0220 0.0144 0.0202 0.0135 0.0146 0.0164 0.0166 0.0142

0.0172 0.0284 0.0288 0.0263 0.0173 0.0164 0.0229 0.0159

0.0152 0.0204 0.0229 0.0185 0.0233 0.0166 0.0229 0.0164

0.0114 0.0196 0.0097 0.0091 0.0152 0.0142 0.0159 0.0164
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0.06 0.03 0.04 0.02 0.04 0.02 0.01 0.01

0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.01

0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01

0.03 0.03 0.03 0.03 0.02 0.03 0.01 0.01

0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00

0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01

ICML 2022 (Stephan Wäldchen) 15/15
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