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Graph-structured convex optimization problem

min
x∈Rd

f (x), subject to x ∈ D(C ,M), where

Graph-structured set:

D(C ,M) ≜ conv {x : ∥x∥2 ≤ C , supp (x) ∈ M} is a convex hull of

interesting support sets described by M, which contains a collection

of allowed structures of the problem.
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Example M: It is defined on a 10-node graph where

each colored region is a subgraph. Elements of M
are these colored region subgraphs.

Applications: Graph-structured compressive sensing, Gene-pathway

finding, etc...
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Frank-Wolfe (FW) algorithm

FW-type algorithm: xt+1 = xt + ηt(ρvt − xt), where vt is the
minimizer of graph-structured LMO

LMO: vt ∈ argmin
v∈D(C ,M)

⟨axt + b∇f (xt), v⟩ .

Setting a = 0, b = 1, ηt = 2/(t + 2) with ρ = 1 recovers the

standard FW.

Fact: LMO is NP-hard to solve when D(C ,M) is complex.
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Approximate LMOs and adversarial examples

Additive approximate LMO[Dunn and Harshbarger, 1978] finds v̄t :
⟨∇f (xt), v̄t⟩ ≤ minv∈D ⟨∇f (xt), v⟩+O( ϵt )

Multiplicative approximate LMO[Locatello et al., 2017] returns

v̄t : ⟨∇f (xt), v̄t − xt⟩︸ ︷︷ ︸
ḡt(xt)

≤ δ · min
v∈D

⟨∇f (xt), v − xt⟩︸ ︷︷ ︸
gt(xt)

, where δ ∈ (0, 1].

Adversarial examples setup: We show that these two popular

approximate LMOs are generally impractical to obtain. Suppose

τ ∈ (0, 1/2) and f (x) = 1
2x

⊤x − x⊤b, b = [1, 1, 1, 1, τ, · · · , τ ]⊤.
Take C = 1 and then the solution is x∗ = [12 ,

1
2 ,

1
2 ,

1
2 , 0, . . . , 0]

⊤

with ∇f (x∗) = −[12 ,
1
2 ,

1
2 ,

1
2 , τ, · · · , τ ]⊤. When xt = x∗, vt = x∗,

and the duality gap gt(x∗) = 0.

Gap-additive bound cannot decay properly: Any suboptimal v̄t
gives gt(x∗)− ḡt(x∗) = 1−

√
3
4 + τ2 > 0, which is strictly positive

and constant in t, hence violating additive approximate LMO.
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Dual approximation oracle

Inner Product Operator (IPO): Given z ∈ Rd , D ⊆ Rd , and

approximation factor δ ∈ (0, 1], it returns v such that

(δ, z ,D) -IPO : ⟨z , v⟩ ≤ δ ·min
s∈D

⟨z , s⟩ .

Dual Maximization Oracle(DMO) finds an S ∈ M such that

(δ, z ,D) -DMO : ∥zS∥2 ≥ δ · max
S ′∈M

∥zS ′∥2.

Theorem (IPO ⇔ DMO)

Given the set D and suppose S ∈ (δ, z ,D)-DMO. Define the

approximate supporting vector ṽt ≜ −C · zS/∥zS∥2. Then,
ṽt ∈ (δ, z ,D)-IPO.

DMO is easy to obtain: The method of Top-g + neighbor

visiting provides δ =
√

1/⌈s/g⌉.
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Approximated DMO-FW

DMO-FW-I:

xt+1 = xt + ηt

(
C ·(zt)St
∥(zt)St ∥2

− xt
)
,St = (δ,∇f (xt),D)-DMO

DMO-FW-II(xt ∈ D/δ): xt+1 = xt + ηt

(
C ·(zt)St

δ·∥(zt)St ∥2
− xt

)
.

Theorem (Convergence Rate of DMO-FW)

Let s = maxS∈M |S | be the maximal allowed sparsity. Suppose

ν ∈ (0, 1] and ∥∇f (x)∥∞ ≤ B, DMO-FW-I admits

h(xt) ≜ f (xt)− f (x∗) ≤

O
(
BC

√
s

tν

)
, ∥∇f (xt)∥∞ ≤ B

tν

O
(
BC

√
s(1−δ)
δ

)
, Otherwise.

Furthermore,

DMO-FW-II(xt ∈ D/δ) : h(xt) ≤
8LC 2

δ2(t + 2)
.



Acceleration: DMO-AccFW

DMO-AccFW (Inspired from Garber and Wolf [2021]):

xt+1 = xt + ηt

(
C ·(zt)St
∥(zt)St∥2

− xt
)
, zt =

(
xt − ∇f (xt)

Lηt

)
.

Quadratic Growth Condition: Exist a constant µ > 0 such that

f (x)− f (x∗) ≥ µ

2
∥x − [x ]X ∗ ∥22,∀x ∈ D, [x ]X ∗ ≜ argmin

z∈X ∗
∥z − x∥22.

Theorem (Main result)

Assume further that x∗ is on the boundary

and δ = 1, for all t ≥ 1, the primal error

of DMO-AccFW satisfies

h(xt) ≤
4e4L/µh(x0)
(t + 2)2

.
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Experimental evaluation

Graph-structured linear sensing: Recover a graph-sparse model

x̃∗ using measurements generated as

y = ⟨A, x̃∗⟩+ e, e ∼ N (0, σ2Id).

A ∈ Rn×d is Gaussian sensing matrix with aij ∼ N (0, 1/
√
n).
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Contributions

• We demonstrate that there exist adversarial examples such that

two popular inexact LMOs are impossible to obtain and

propose two types of approximate FW methods.

• We prove that the DMO is equivalent to the IPO. The

standard FW admits O((1− δ)
√
s/δ) in worst case and our

accelerated version has rate O(1/t2).

• Initial experiments indicate that inexact FW-type methods are

attractive for this type of problems and one is encouraged to

find faster methods based on fully-corrective or other methods.

Code and datasets: https://github.com/baojian/dmo-fw

https://github.com/baojian/dmo-fw
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