Approximate Frank-Wolfe Algorithms over
Graph-structured Support Sets

Baojian Zhou L Yifan Sun 2
July 19, 2022

LFudan University

?Stony Brook University



Graph-structured convex optimization problem

min f(x), subject to x € D(C,M), where
xeRd



Graph-structured convex optimization problem

min f(x), subject to x € D(C,M), where
xeRd

Graph-structured set:

D(C,M) = conv {x : ||x|2 < C,supp (x) € M} is a convex hull of
interesting support sets described by M, which contains a collection
of allowed structures of the problem.



Graph-structured convex optimization problem

min f(x), subject to x € D(C,M), where
xeRd

Graph-structured set:

D(C,M) = conv {x : ||x|2 < C,supp (x) € M} is a convex hull of
interesting support sets described by M, which contains a collection
of allowed structures of the problem.

Example M: It is defined on a 10-node graph where
each colored region is a subgraph. Elements of M
are these colored region subgraphs.




Graph-structured convex optimization problem

min f(x), subject to x € D(C,M), where
xeRd

Graph-structured set:
D(C,M) = conv {x : ||x|2 < C,supp (x) € M} is a convex hull of
interesting support sets described by M, which contains a collection

of allowed structures of the problem.

Example M: It is defined on a 10-node graph where
each colored region is a subgraph. Elements of M
are these colored region subgraphs.

Applications: Graph-structured compressive sensing, Gene-pathway

finding, etc...



Frank-Wolfe (FW) algorithm

FW-type algorithm: x;; = x; + n:(pv: — x¢), where v; is the
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standard FW.
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FW-type algorithm: x;; = x; + n:(pv: — x¢), where v; is the
minimizer of graph-structured LMO

LMO: v; € argmin (ax; + bV (x¢), v).
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Setting a=0,b=1,7m: = 2/(t + 2) with p = 1 recovers the
standard FW.

Fact: LMO is NP-hard to solve when D(C, M) is complex.
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Additive approximate LMO[Dunn and Harshbarger, 1978] finds v;:
<Vf(xt), |7t> S minvep <Vf(Xt), V> -+ O(%)

Multiplicative approximate LMO|Locatello et al., 2017] returns
Ve: (VF(xe), vy —x¢) <9 - milr; (VFf(xt), v — x¢), where § € (0,1].
ve

gt(xt)
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Adversarial examples setup: We show that these two popular
approximate LMOs are generally impractical to obtain. Suppose
7€(0,1/2) and f(x) =ix"x—x"b, b=[1,1,1,1,7,--- ,7]".
Take C =1 and then the solution is x* = [%, %, %, %,O, ..,0T
with VF(x*) = — %, %, %, %,7’, -, 7]". When x; = x*, v; = x*,
and the duality gap g:(x*) = 0.

Gap-additive bound cannot decay properly: Any suboptimal v,
gives g¢(x*) — ge(x*) =1— /2 + 72 > 0, which is strictly positive
and constant in t, hence violating additive approximate LMO.
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Dual approximation oracle

Inner Product Operator (IPO): Given z € RY, D C RY, and
approximation factor ¢ € (0, 1], it returns v such that

(6,z,D)-IPO : (z,v) §5-rs‘n€|B (z,s) .

Dual Maximization Oracle(DMO) finds an S € M such that

= : >0 - 2.
(8, z, D)-DMO lzsll2 = & - max |lzs[|2

Theorem (IPO < DMO)

Given the set D and suppose S € (6,2, D)-DMO. Define the
approximate supporting vector vy = —C - zs /| zs||2. Then,
v; € (9,2,D)-IPO.

DMO is easy to obtain: The method of Top-g + neighbor

visiting provides 6 = \/1/[s/g].



Approximated DMO-FW

DMO-FW-I:
Xty1 = Xp +1e (% - Xt) , St = (0, Vf(xt), D)-DMO

DMO-FW-II(x; € D/8): Xe11 = X¢ + 1t (ﬁ - xt) .

Theorem (Convergence Rate of DMO-FW)
Let s = maxscn |S| be the maximal allowed sparsity. Suppose
v € (0,1] and ||[Vf(x)]|lcc < B, DMO-FW-I admits

0(5%5), VAl < &

h(x) £ f(xe) — f(x) < 3
. t ) (W) ,  Otherwise.
Furthermore,

DMO-FW-II(x, € D/8) - h(xe) < =&
- = Xt o Xt _52(t—|—2)



Acceleration: DMO-AccFW
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Acceleration: DMO-AccFW

DMO-AccFW (Inspired from Garber and Wolf [2021]):

C- t t
Xt+1_xt+77t( (Z)St —Xt>7zt_<xt_vz$]):)>'

Ize)s I,

Quadratic Growth Condition: Exist a constant g > 0 such that

F(x) = F(x") 2 Sllx = [x]- [, Yx € D, [x] £ axgmin|z - x|}
zeX*

Theorem ( )

Assume further that x* is on the boundary
and 0 =1, for all t > 1, the primal error »
of DMO-AccFW satisfies

DMO-FW

4e4L/IJ‘ h(xo) . DMO-AccFW

h(x:) < W i @




Experimental evaluation

Graph-structured linear sensing: Recover a graph-sparse model
X* using measurements generated as

y = (A X") + e, eNN(O,U2Id).

A € R"™9 s Gaussian sensing matrix with a;; ~ N(0,1/+/n).



Experimental evaluation

Graph-structured linear sensing: Recover a graph-sparse model

X* using measurements generated as

y=(A X"+ e, eNN(O,O'ZId).
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Contributions

e We demonstrate that there exist adversarial examples such that
two popular inexact LMOs are impossible to obtain and
propose two types of approximate FW methods.

e We prove that the DMO is equivalent to the IPO. The
standard FW admits O((1 — §)+/s/d) in worst case and our
accelerated version has rate O(1/t2).

e Initial experiments indicate that inexact FW-type methods are
attractive for this type of problems and one is encouraged to
find faster methods based on fully-corrective or other methods.

Code and datasets: https://github.com/baojian/dmo-fw
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