

Sequential- and Parallel- Constrained Max-value Entropy Search via Information Lower Bound (ICML2022)

Shion Takeno^{1, 2}, Tomoyuki Tamura¹,
Kazuki Shitara^{3,4}, and Masayuki Karasuyama¹

¹Nagoya Institute of Technology

²RIKEN AIP

³Osaka University

⁴Japan Fine Ceramics Center

Constrained optimization for black-box functions

- Black-box optimization with unknown constraints:

$$\max_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}), \text{ s.t. } g_c(\boldsymbol{x}) \geq z_c \text{ for } c = 1, \dots, C,$$

Constrained optimization for black-box functions

- Black-box optimization with unknown constraints:

$$\max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}), \text{ s.t. } g_c(\mathbf{x}) \geq z_c \text{ for } c = 1, \dots, C,$$

Drug discovery:

f : Medicinal effect

g : Side effects

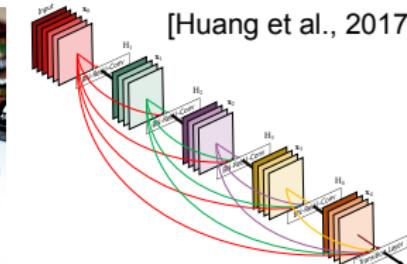
Materials design:

f : Ion-conductivity

g : Safety

AutoML:

[Huang et al., 2017]



f : Accuracy

g : Fairness

Constrained optimization for black-box functions

- Black-box optimization with unknown constraints:

$$\max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}), \text{ s.t. } g_c(\mathbf{x}) \geq z_c \text{ for } c = 1, \dots, C,$$

Drug discovery:

f : Medicinal effect

g : Side effects

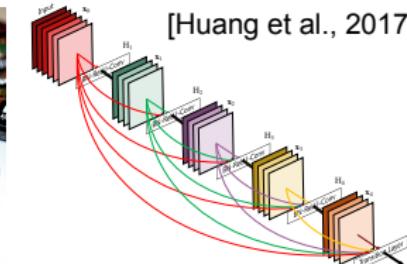
Materials design:

f : Ion-conductivity

g : Safety

AutoML:

[Huang et al., 2017]



f : Accuracy

g : Fairness

Evaluation cost for f and g_1, \dots, g_C is often expensive. 😞

Constrained Bayesian optimization

- Constrained Bayesian optimization (CBO) aims for sample-efficient optimization.

CBO based on Max-value entropy search (MES)

- MES for unconstrained problem [Wang and Jegelka, 2017]

$$\text{AF}(\mathbf{x}) = \text{MI}(f_*; f(\mathbf{x})), \text{ where } f_* = \max_{\mathbf{x}} f(\mathbf{x}).$$

CBO based on Max-value entropy search (MES)

- MES for unconstrained problem [Wang and Jegelka, 2017]

$$\text{AF}(\mathbf{x}) = \text{MI}(f_*; f(\mathbf{x})), \text{ where } f_* = \max_{\mathbf{x}} f(\mathbf{x}).$$

- However, for constrained problems, we revealed that
 - ▶ optimal value f_* may not exist

CBO based on Max-value entropy search (MES)

- MES for unconstrained problem [Wang and Jegelka, 2017]

$$\text{AF}(\mathbf{x}) = \text{MI}(f_*; f(\mathbf{x})), \text{ where } f_* = \max_{\mathbf{x}} f(\mathbf{x}).$$

- However, for constrained problems, we revealed that
 - ▶ optimal value f_* may not exist
 - ▶ conventional mutual information (MI) approximation can be negative

CBO based on Max-value entropy search (MES)

- MES for unconstrained problem [Wang and Jegelka, 2017]

$$\text{AF}(\mathbf{x}) = \text{MI}(f_*; f(\mathbf{x})), \text{ where } f_* = \max_{\mathbf{x}} f(\mathbf{x}).$$

- However, for constrained problems, we revealed that
 - ▶ optimal value f_* may not exist
 - ▶ conventional mutual information (MI) approximation can be negative

our key ideas

- Re-define f_* with infinite penalty of infeasibility
 - ▶ integrate uncertainty of feasibility

CBO based on Max-value entropy search (MES)

- MES for unconstrained problem [Wang and Jegelka, 2017]

$$AF(\mathbf{x}) = MI(f_*; f(\mathbf{x})), \text{ where } f_* = \max_{\mathbf{x}} f(\mathbf{x}).$$

- However, for constrained problems, we revealed that
 - ▶ optimal value f_* may not exist
 - ▶ conventional mutual information (MI) approximation can be negative

our key ideas

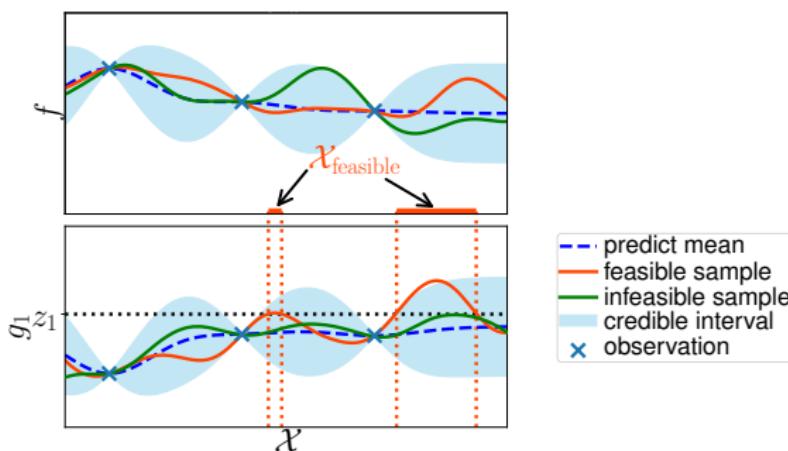
- Re-define f_* with infinite penalty of infeasibility
 - ▶ integrate uncertainty of feasibility
- AF based on the lower bound of MI
 - ▶ easy-to-compute
 - ▶ bounded from below by PI (> 0)
 - ▶ low estimation variance

Definition of optimal value f_* for constrained problems

- A straightforward definition: $\max_{\mathbf{x} \in \mathcal{X}_{\text{feasible}}} f(\mathbf{x})$ [Perrone et al., 2019]
 - ▶ $\mathcal{X}_{\text{feasible}}$ is a feasible region.

Definition of optimal value f_* for constrained problems

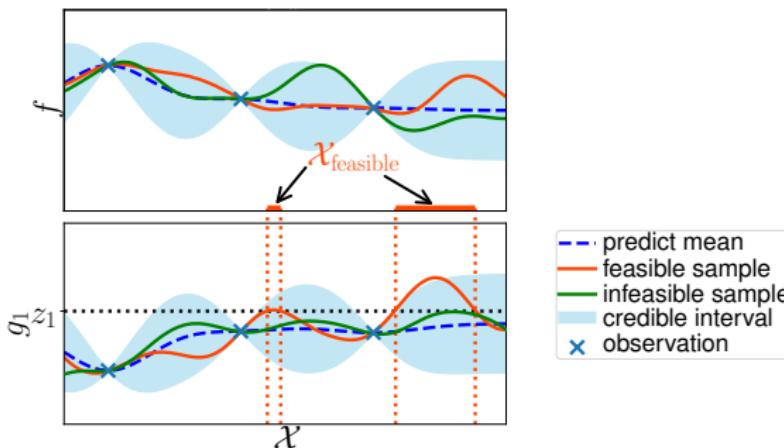
- A straightforward definition: $\max_{\mathbf{x} \in \mathcal{X}_{\text{feasible}}} f(\mathbf{x})$ [Perrone et al., 2019]
 - ▶ $\mathcal{X}_{\text{feasible}}$ is a feasible region.
 - ▶ However, $\mathcal{X}_{\text{feasible}}$ **can be empty** as in the following **green sample path**.



Definition of optimal value f_* for constrained problems

- A straightforward definition: $\max_{\mathbf{x} \in \mathcal{X}_{\text{feasible}}} f(\mathbf{x})$ [Perrone et al., 2019]
 - ▶ $\mathcal{X}_{\text{feasible}}$ is a feasible region.
 - ▶ However, $\mathcal{X}_{\text{feasible}}$ **can be empty** as in the following **green sample path**.
- We set:

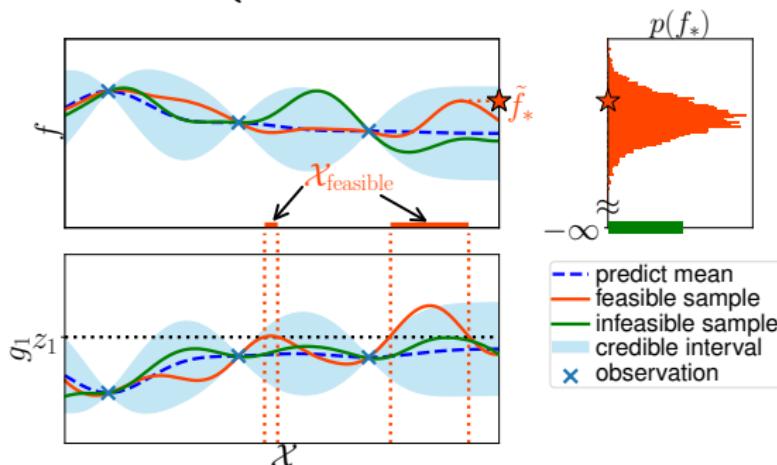
$$f_* := \begin{cases} \max_{\mathbf{x} \in \mathcal{X}_{\text{feasible}}} f(\mathbf{x}), & \text{if } \mathcal{X}_{\text{feasible}} \neq \emptyset, \\ -\infty, & \text{otherwise.} \end{cases}$$



Definition of optimal value f_* for constrained problems

- A straightforward definition: $\max_{\mathbf{x} \in \mathcal{X}_{\text{feasible}}} f(\mathbf{x})$ [Perrone et al., 2019]
 - ▶ $\mathcal{X}_{\text{feasible}}$ is a feasible region.
 - ▶ However, $\mathcal{X}_{\text{feasible}}$ **can be empty** as in the following **green sample path**.

- We set:
$$f_* := \begin{cases} \max_{\mathbf{x} \in \mathcal{X}_{\text{feasible}}} f(\mathbf{x}), & \text{if } \mathcal{X}_{\text{feasible}} \neq \emptyset, \\ -\infty, & \text{otherwise.} \end{cases}$$



- $p(f_*)$ contains the **uncertainty of feasibility**.

Acquisition function of the proposed method

- We develop Monte Carlo (MC) estimator of lower bound of MI for AF.

Acquisition function of the proposed method

- We develop Monte Carlo (MC) estimator of lower bound of MI for AF.
- Our AF results in,

$$\text{AF}(\mathbf{x}) = -\frac{1}{|\mathcal{F}_*|} \sum_{\tilde{f}_* \in \mathcal{F}_*} \log(1 - \boxed{\Pr(f(\mathbf{x}) \geq \tilde{f}_* \text{ and } \forall c, g_c(\mathbf{x}) \geq z_c)}),$$

where \mathcal{F}_* is a sample set of f_* .

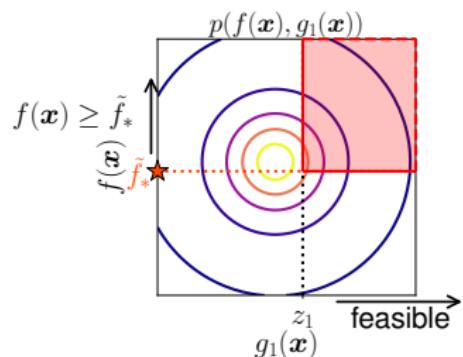
Acquisition function of the proposed method

- We develop Monte Carlo (MC) estimator of lower bound of MI for AF.
- Our AF results in,

$$\text{AF}(\mathbf{x}) = -\frac{1}{|\mathcal{F}_*|} \sum_{\tilde{f}_* \in \mathcal{F}_*} \log \left(1 - \Pr(f(\mathbf{x}) \geq \tilde{f}_* \text{ and } \forall c, g_c(\mathbf{x}) \geq z_c) \right),$$

where \mathcal{F}_* is a sample set of f_* .

- Red probability can be seen as PI from \tilde{f}_* .



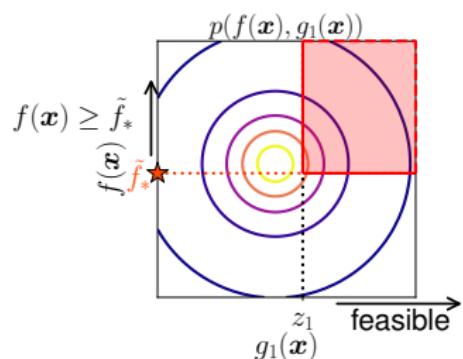
Acquisition function of the proposed method

- We develop Monte Carlo (MC) estimator of lower bound of MI for AF.
- Our AF results in,

$$\text{AF}(\mathbf{x}) = -\frac{1}{|\mathcal{F}_*|} \sum_{\tilde{f}_* \in \mathcal{F}_*} \log \left(1 - \Pr(f(\mathbf{x}) \geq \tilde{f}_* \text{ and } \forall c, g_c(\mathbf{x}) \geq z_c) \right),$$

where \mathcal{F}_* is a sample set of f_* .

- Red probability can be seen as PI from \tilde{f}_* .
- ▶ Computed easily by Gaussian CDF.



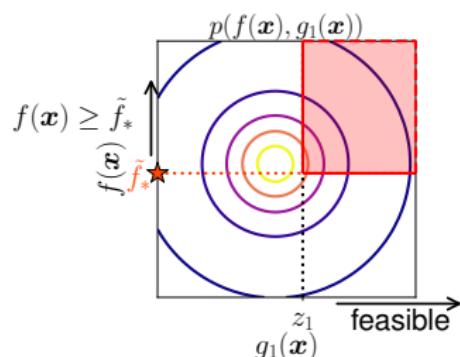
Acquisition function of the proposed method

- We develop Monte Carlo (MC) estimator of lower bound of MI for AF.
- Our AF results in,

$$\text{AF}(\mathbf{x}) = -\frac{1}{|\mathcal{F}_*|} \sum_{\tilde{f}_* \in \mathcal{F}_*} \log \left(1 - \Pr(f(\mathbf{x}) \geq \tilde{f}_* \text{ and } \forall c, g_c(\mathbf{x}) \geq z_c) \right),$$

where \mathcal{F}_* is a sample set of f_* .

- Red probability can be seen as **PI from \tilde{f}_*** .
 - ▶ Computed easily by Gaussian CDF.
- Two important properties of our AF:
 - ▶ AF is bounded from below by **PI** (Remark 4.1);



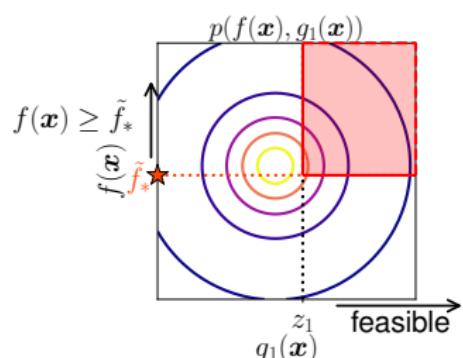
Acquisition function of the proposed method

- We develop Monte Carlo (MC) estimator of lower bound of MI for AF.
- Our AF results in,

$$\text{AF}(\mathbf{x}) = -\frac{1}{|\mathcal{F}_*|} \sum_{\tilde{f}_* \in \mathcal{F}_*} \log \left(1 - \Pr(f(\mathbf{x}) \geq \tilde{f}_* \text{ and } \forall c, g_c(\mathbf{x}) \geq z_c) \right),$$

where \mathcal{F}_* is a sample set of f_* .

- Red probability can be seen as **PI from \tilde{f}_*** .
 - ▶ Computed easily by Gaussian CDF.
- Two important properties of our AF:
 - ▶ AF is bounded from below by **PI** (Remark 4.1);
 - ★ Directly implies **non-negativity**;



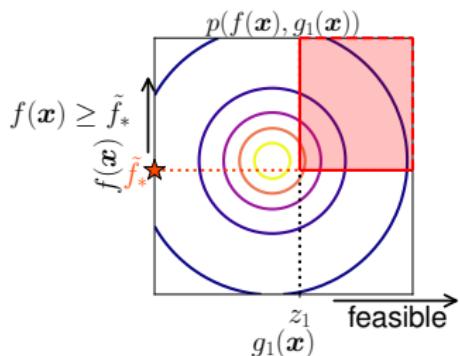
Acquisition function of the proposed method

- We develop Monte Carlo (MC) estimator of lower bound of MI for AF.
- Our AF results in,

$$\text{AF}(\mathbf{x}) = -\frac{1}{|\mathcal{F}_*|} \sum_{\tilde{f}_* \in \mathcal{F}_*} \log \left(1 - \Pr(f(\mathbf{x}) \geq \tilde{f}_* \text{ and } \forall c, g_c(\mathbf{x}) \geq z_c) \right),$$

where \mathcal{F}_* is a sample set of f_* .

- Red probability can be seen as **PI from \tilde{f}_*** .
 - ▶ Computed easily by Gaussian CDF.
- Two important properties of our AF:
 - ▶ AF is bounded from below by **PI** (Remark 4.1);
 - ★ Directly implies **non-negativity**;
 - ▶ low estimation variance of MC estimation (Theorem 4.1).



Experiments

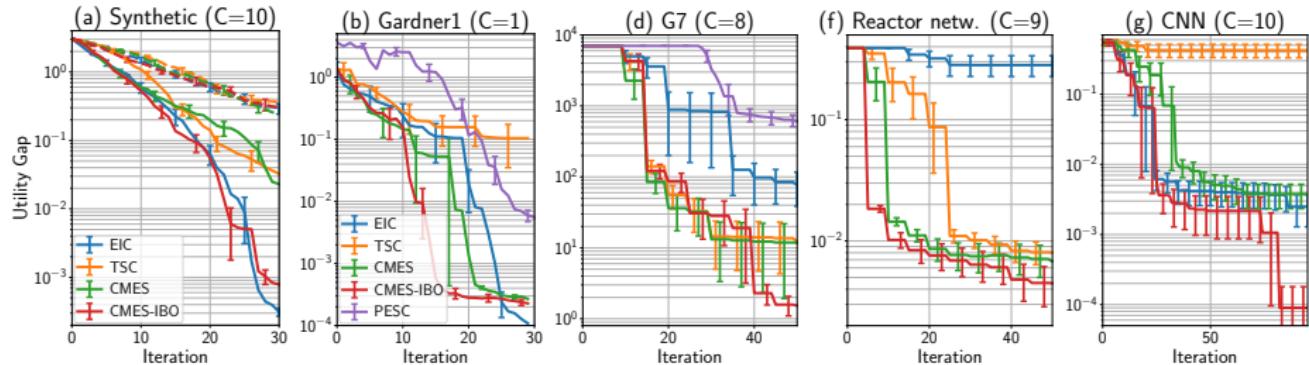


Figure: The solid line and error bar shows the mean and standard error, respectively.

- We evaluate following utility gap:

$$\text{UG}_t := \begin{cases} f_* - f(\hat{x}_t) & \text{if } \hat{x}_t \text{ is feasible,} \\ f_* - \min f(\mathbf{x}) & \text{otherwise} \end{cases}$$

- ▶ $\hat{x}_t := \text{argmax}_{\mathbf{x} \in \mathcal{X}} \mu_t^{(f)}(\mathbf{x})$, s.t. $\forall c, \Pr(g_c(\mathbf{x}) \geq z_c) \geq \sqrt[|C|]{0.95}$
- ★ $\mu_t^{(f)}(\mathbf{x})$ is a predicted mean of the objective f at iteration t .

- Proposed CMES-IBO (red line) shows superior performance.

References I

Valerio Perrone, Iaroslav Shcherbatyi, Rodolphe Jenatton, Cedric Archambeau, and Matthias Seeger. Constrained Bayesian optimization with max-value entropy search. *arXiv:1910.07003*, 2019.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In *Proceedings of the 34th International Conference on Machine Learning*, volume 70, pages 3627–3635. PMLR, 2017.