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Constrained optimization for black-box functions

• Black-box optimization with unknown constraints:

max
x∈X

f(x), s.t. gc(x) ≥ zc for c = 1, . . . , C,

Drug discovery:

f : Medicinal effect

g: Side effects

Materials design:

f : Ion-conductivity

g: Safety

AutoML:
x0

x1

H1

x2
H2

H3

H4

x3

x4

[Huang et al., 2017]

f : Accuracy

g: Fairness� �
Evaluation cost for f and g1, . . . , gC is often expensive.� �
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Constrained Bayesian optimization

• Constrained Bayesian optimization (CBO) aims for sample-efficient

optimization.
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CBO based on Max-value entropy search (MES)

• MES for unconstrained problem [Wang and Jegelka, 2017]

AF(x) = MI(f∗; f(x)), where f∗ = max
x

f(x).

• However, for constrained problems, we revealed that
▶ optimal value f∗ may not exist

▶ conventional mutual information (MI) approximation can be negative

our key ideas

• Re-define f∗ with infinite penalty of

infeasibility

▶ integrate uncertainty of feasibility

• AF based on the lower bound of MI

▶ easy-to-compute

▶ bounded from below by PI (> 0)

▶ low estimation variance
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Definition of optimal value f∗ for constrained problems

• A straightforward definition: maxx∈Xfeasible
f(x) [Perrone et al., 2019]

▶ Xfeasible is a feasible region.

▶ However, Xfeasible can be empty as in the following green sample path.

• We set: f∗ :=

maxx∈Xfeasible
f(x), if Xfeasible ̸= ∅,

−∞, otherwise.

• p(f∗) contains the uncertainty of feasibility.
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Acuqisition function of the proposed method

• We develop Monte Carlo (MC) estimator of lower bound of MI for AF.

• Our AF results in,

AF(x) = − 1

|F∗|
∑

f̃∗∈F∗

log
(
1− Pr(f(x) ≥ f̃∗ and ∀c, gc(x) ≥ zc)

)
,

where F∗ is a sample set of f∗.

• Red probability can be seen as PI from f̃∗ .

▶ Computed easily by Gaussian CDF.

• Two important properties of our AF:
▶ AF is bounded from below by PI

(Remark 4.1);

⋆ Directly implies non-negativity;

▶ low estimation variance of MC estimation

(Theorem 4.1).
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p(f (x), g1(x))
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Experiments
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Figure: The solid line and error bar shows the mean and standard error, respectively.

• We evaluate following utility gap:

UGt :=

f∗ − f(x̂t) if x̂t is feasible,

f∗ −min f(x) otherwise

▶ x̂t := argmaxx∈X µ
(f)
t (x), s.t. ∀c, Pr(gc(x) ≥ zc) ≥ C

√
0.95

⋆ µ
(f)
t (x) is a predicted mean of the objective f at iteration t.

• Proposed CMES-IBO (red line) shows superior performance.
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