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[Evaluation cost for f and g1, ..., gc is often expensive. ® ]




Constrained Bayesian optimization

e Constrained Bayesian optimization (CBO) aims for sample-efficient

optimization.

Predictions by Bayesian models
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CBO based on Max-value entropy search (MES)

e MES for unconstrained problem [Wang and Jegelka, 2017]

AF(x) = MI(f.; f(x)), where f, = max f(x).
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Definition of optimal value f, for constrained problems

* A straightforward definition: maxgzex;,, . f(Z) [Perrone et al., 2019]
> Xleasible IS a feasible region.

> However, Xfeasible Can be empty as in the following green sample path.

o We set: f . mMaXyec X asible f(m)’ if Xfeasible 7é (Dv
. *

—00, otherwise.

p(fs)
5 ;’k[
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v
HH —00

— - predict mean
—— feasible sample
— infeasible sample
credible interval
x observation

® p(f.) contains the uncertainty of feasibility.
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® QOur AF results in,

AF(@) =~ J;E; tog(1 = [Pr(f(x) > f. and Ve, (@) > 20) ).

where F, is a sample set of f,.

* Red probability can be seen as | Pl from f, |

» Computed easily by Gaussian CDF. /

e Two important properties of our AF:

» AF is bounded from below by
(Remark 4.1);

* Directly implies non-negativity; \ /

: é
. ) ) ) ) 21 feasible
> low estimation variance of MC estimation gi(z)

(Theorem 4.1).
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Experiments

(a) Synthetic (L=1U) (b) Gardnerl (L=1) " (d) G/ (L=8) (t) Reactor netw. (L=Y)
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Figure: The solid line and error bar shows the mean and standard error, respectively.
® \We evaluate following utility gap:

UG, = fe = f(@4) if @ is feasible,
f« —min f(x) otherwise

> &, = argmax,cx ,ugf) (x),s.t. Ve, Pr(ge(x) > z.) > ¥0.95
* /,Lif)(:n) is a predicted mean of the objective f at iteration t.

® Proposed CMES-IBO (red line) shows superior performance.



References |

Valerio Perrone, laroslav Shcherbatyi, Rodolphe Jenatton, Cedric Archambeau, and Matthias
Seeger. Constrained Bayesian optimization with max-value entropy search. arXiv:1910.07003,
2019.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In

Proceedings of the 34th International Conference on Machine Learning, volume 70, pages
3627-3635. PMLR, 2017.



	References

	anm2: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.2: 
	0.1: 
	0.0: 


