

A Statistical Manifold Framework for Point Cloud Data

Yonghyeon Lee*
Seoul National University

Seungyeon Kim*
Seoul National University

Jinwon Choi Kakao Enterprise

Frank C. Park
Seoul National University
Saige Research

Point Cloud Data

3D point cloud data

Point Cloud Data

Point cloud data is a set

$$\mathbf{X} = \{x_1, x_2, \cdots, x_n | x_i \in \mathbb{R}^3\}$$

Point Cloud Distance Metric

Euclidean distance

$$d(\mathbf{X}, \mathbf{Y}) = ||\mathbf{X} - \mathbf{Y}||?$$

Point Cloud Distance Metric

Hausdorff distance

$$\max(\max_{x \in \mathbf{X}} \left(\min_{y \in \mathbf{Y}} ||x - y||^2 \right), \max_{y \in \mathbf{Y}} \left(\min_{x \in \mathbf{X}} ||x - y||^2 \right))$$

More Advanced Geometric Concepts

How to measure quantities such as the velocity and acceleration of a moving point cloud?

What about the usual "Euclidean" way?

• Euclidean norm of $\dot{\mathbf{X}} = \{\dot{x}_1, \dot{x}_2, \cdots, \dot{x}_n | \dot{x}_i \in \mathbb{R}^3\}$:

$$||\dot{\mathbf{X}}||^2 := \sum_{i=1}^n \dot{x}_i^T \dot{x}_i.$$

What about the usual "Euclidean" way?

• Euclidean norm of $\dot{\mathbf{X}} = \{\dot{x}_1, \dot{x}_2, \dots, \dot{x}_n | \dot{x}_i \in \mathbb{R}^3\}$:

$$||\dot{\mathbf{X}}||^2 := \sum_{i=1}^n \dot{x}_i^T \dot{x}_i.$$

• For the following matrix representation

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix} \in \mathbb{R}^{n \times 3},$$

the Euclidean norm is written as

$$||\dot{\mathbf{X}}||^2 = \dot{X}^T \dot{X}.$$

What about the usual "Euclidean" way?

Both velocities have the same Euclidean norm

Euclidean norm does not capture the change in "shape"

Statistical Manifold Framework

Statistical Manifold Framework

With the Fisher information metric acting as a natural Riemannian metric* for the statistical manifold, the Riemannian norm can be defined as follows:

$$||\dot{\mathbf{X}}||^2 \coloneqq \sum_{i,k=1}^n \sum_{i,l=1}^3 \mathbb{E}_{x \sim p(x;\mathbf{X})} \left[\frac{\partial \log p(x;\mathbf{X})}{\partial X^{ij}} \frac{\partial \log p(x;\mathbf{X})}{\partial X^{kl}} \right] \dot{X}^{ij} \dot{X}^{kl} ,$$

where X is the matrix representation of the point cloud \mathbf{X} such that $X = (X^{ab})$ for $a = 1, \dots, n$ and b = 1,2,3.

A Riemannian metric* allows one to define distances and angles near each point of a surface (or, more generally, a manifold), in the same way distances and angles in Euclidean space can be defined via an inner product.

Statistical Manifold Framework

With the Fisher information metric acting as a natural Riemannian metric* for the statistical manifold, the Riemannian norm can be defined as follows:

$$||\dot{\mathbf{X}}||^2 \coloneqq \sum_{i,k=1}^n \sum_{j,l=1}^3 \mathbb{E}_{x \sim p(x;\mathbf{X})} \left[\frac{\partial \log p(x;\mathbf{X})}{\partial X^{ij}} \frac{\partial \log p(x;\mathbf{X})}{\partial X^{kl}} \right] \dot{X}^{ij} \dot{X}^{kl}$$

where X is the matrix representation of the point cloud X such that

$$X=\left(X^{ab}\right)$$
 for $a=1,\cdots,n$ and $b=1,2,3$.

$$||\frac{d}{dt}\log p(x;\mathbf{X})||^2$$

It captures the change in "distribution"

In the proposed "Riemannian" way

Both velocities have different Riemannian norms (larger for the case A than B)

→ Riemannian norm can capture the change in "shape"

......

Latent space

Linear interpolants

Classification accuracy by transfer learning for ModelNet10 (MN10) and ModelNet40 (MN40) from ShapeNet.

METHOD	MN40	MN10
FcNet	88.3%	93.5%
FcNet + E (ours)	89.3%	93.7%
FcNet + I (ours)	90.4%	94.3%
FoldingNet	89.3%	93.7%
FoldingNet + E (ours)	88.9%	94.4%
FoldingNet + I (ours)	90.1%	94.5%
PointCapsNet	87.2%	93.6%
PointCapsNet + E (ours)	88.1%	93.7%
PointCapsNet + I (ours)	88.5%	93.9%
DGCNN-FcNet	90.3%	94.5%
DGCNN-FcNet + E (ours)	89.9%	94.4%
DGCNN-FcNet + I (ours)	91.0%	95.2%

Vanilla setting

METHOD	MN40			
	1%	5%	10%	20%
FcNet	87.8%	83.2%	75.6%	64.5%
FcNet + E (ours)	86.6%	85.1%	79.1%	70.4%
FcNet + I (ours)	89.0%	86.6%	81.4%	72.4%
		Mi	V10	
	1%	5%	10%	20%
FcNet	92.4%	91.9%	88.4%	79.8%
FcNet + E (ours)	92.2%	91.1%	88.2%	82.6%
FcNet + I (ours)	93.3%	92.6%	91.6%	84.8%

Noisy data setting

METHOD	MN40				
	50%	10%	5%	1%	
FcNet	<u>85.7%</u>	<u> 78.0%</u>	_70.6% _	50. <u>3%</u>	
FcNet + I (ours)	87.9 %	81.6%	76.8%	57.4%	
	MN10				
	50%	10%	5%	1%	
EcNet	91.7%	_90.1%_	87.2%	74.1%	
FcNet + I (ours)	93.2%	91.2%	88.3%	78.1 %	

Semi-supervised learning setting

More in the Paper

- Formal and general descriptions of
 - ✓ point cloud statistical manifold
 - ✓ information Riemannian metric
- More experimental results
- Thorough comparison with recent related works

...and much more!

Thank you for listening!

Contact: yhlee@robotics.snu.ac.kr, sykim@robotics.snu.ac.kr,

Code: https://github.com/seungyeon-k/SMF-public