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1Inter-class ambiguity
different labels but similar images
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Some species are visually similar

Necessary to return several classes



2Motivation of Top-K
From a single to many predicted labels

Possible solution: return the K "most likely" classes for all images

▶ Pros for a small K:
model output must remain informative

▶ Pros for a large K:
ensure the true class lies in the K returned classes

Choice of K :

▶ task-dependant, often K = 3, 5, . . . or even larger for challenging tasks
▶ considered fixed by the user for the talk (not tuned)



3Deep learning
Multi-class classification

Scores So�tmax Probabilities

Last layer

▶ L: number of classes, [L] := {1, . . . , L}, label space
▶ K ∈ [L] is a fixed parameter used for top-K
▶ From an image, get a score vector s = (s1, . . . , sL)

⊤ ∈ RL (aka logits)
▶ sk : score for class k
▶ Prediction: output the K classes with the K highest scores



4Deep learning
classic training procedure

▶ Training: cross-entropy (CE) loss + Stochastic Gradient Descent (SGD)

▶ ℓCE(s, y) = − log
( esy∑

k∈[L] esk

)

Example : L = 3, K = 2, y = 3
(Normalized) level set of s 7→ ℓCE(s, y):

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

▶ Not designed to optimize top-K accuracy
▶ Can we do better than cross entropy ?



5Notation and properties(1) for top-K

For a score vector s ∈ RL:

Definition

topK : s 7→ s(K) (K-th largest score)

Properties

▶ ∇topK(s) = arg topK(s) ∈ RL :
vector with a single 1 at the K-th largest coordinate of s, 0 o.w.

For s =


4.0
−1.5
2.5
1.0

, top2(s) = 2.5 ∇top2(s) := arg top2(s) =


0
0
1
0


(1) F. Yang and S. Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 10727–10735.



6Top-K error

Objective: minimize top-K error (0/1 loss):

ℓK(s, y) = 1{topK(s)>sy}

Problem: piecewise constant function w.r.t. s, hard to optimize!!!

(Normalized) Level sets of s 7→ ℓK(s, y), L = 3, K = 2, y = 3.



7Top-K calibrated hinge loss(2)

A top-K hinge-loss that is top-K calibrated:

ℓK
Cal. Hinge(s, y) = (1 + topK+1(s)− sy)+

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

Better theoretical properties, but still fails with deep learning (more later)

Problem: s → topK(s) non-smooth and sparse gradient

(2) F. Yang and S. Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 10727–10735.



8Smooth top-K (3)

Definition

Motivation: topK is a non-smooth, function, smooth it!
▶ smoothing parameter ϵ > 0
▶ score s ∈ RL

Definition

The ϵ-smoothed version of topK :

topK,ϵ(s) ≜ EZ[topK(s + ϵZ)]

Z : standard normal random vector, Z ∼ N (0, IdL)

(3) Q. Berthet et al. (2020). “Learning with differentiable perturbed optimizers”. In: NeurIPS.



9Smooth top-K
Proposition

Proposition

For a smoothing parameter ϵ > 0,
▶ topK,ϵ is 4

√
KL
ϵ -smooth.

▶ For any s ∈ RL, |topK,ϵ(s)− topK(s)| ≤ ϵ · CK,L, where
CK,L = K

√
2 log L.

▶ The gradient of topK,ϵ reads:
∇stopK,ϵ(s) = E[arg topK(s + ϵZ)]

▶ From non-smooth to smooth function with simple stochastic
perturbation

▶ When ϵ → 0, recover the original function



10Practical implementation: forward pass

Solution: Draw B noise vectors Z1, . . . , ZB, with Zb
i.i.d.∼ N (0, IdL) for b ∈ [B].

topK,ϵ(s) = EZ[topK(s + ϵZ)]

Monte Carlo estimation :

t̂opK,ϵ,B(s) = 1
B

B∑
b=1

topK(s + ϵZb)

Easy implementation with deep learning libraries e.g., Pytorch, Tensorflow



11Practical implementation: backward pass

Solution: Draw B noise vectors Z1, . . . , ZB, with Zb
i.i.d.∼ N (0, IdL) for b ∈ [B].

∇stopK,ϵ(s) = E[arg topK(s + ϵZ)]

Monte Carlo estimation :

∇̂topK,ϵ,B(s) = 1
B

B∑
b=1

arg topK(s + ϵZb)

Pytorch implementation available at:

https://github.com/garcinc/noised-topk

https://github.com/garcinc/noised-topk


12Imbalanced top-K loss

Modification: use larger margins for classes with few examples(4):

ℓ
K,ϵ,B,my
Noised Imbal.(s, y) = (my + t̂opK+1,ϵ,B(s)− sy)+

(1)
Set my = C/n1/4

y , with ny the number of samples in the training set with class
y, and C a hyperparameter to be tuned on a validation set.
Intuition: add more emphasis on rarely seen examples

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

(a) ℓK,0.3,30
Noised bal. .

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

(b) ℓK,1,30
Noised bal. .

(4) K. Cao et al. (2019). “Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss”. In: NeurIPS. vol. 32, pp. 1565–1576.



13Comparison of several losses

K ℓCE ℓK,0.1
Smoothed Hinge ℓK,1.0,5

Noised bal. focal (γ = 2.0) ℓ
max my=0.2
LDAM ℓ

K,0.01,5,max my=0.2
Noised imbal.

1 36.3±0.3 35.7±0.2 35.8±0.3 37.6±0.3 40.6±0.1 42.4±0.3
3 58.8±0.4 50.3±0.2 58.7±0.4 60.4±0.3 63.3±0.3 64.9±0.4
5 68.7±0.2 50.9±0.3 66.4±0.5 69.7±0.2 71.9±0.3 73.2±0.5

Macro-average test top-K accuracy on Pl@ntNet-300K, ResNet-50.

▶ Imbalanced losses fare better than balanced losses
▶ Class-wise margin is effective compared to constant margin
▶ ℓ

K,ϵ,B,my
Noised imbal. outperforms other losses on Pl@ntNet-300K

▶ Many more experiments in the paper !
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Thank you for your attention !
Contact: camille.garcin@umontpellier.fr
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