

Dataset Condensation via Efficient Synthetic-Data Parameterization

Jang-Hyun Kim¹, Jinuk Kim¹, Seong Joon Oh^{2,3}, Sangdoo Yun²,
Hwanjun Song², Joonhyun Jeong², Jung-Woo Ha², Hyun Oh Song¹

¹Seoul National University ²NAVER AI ³University of Tübingen

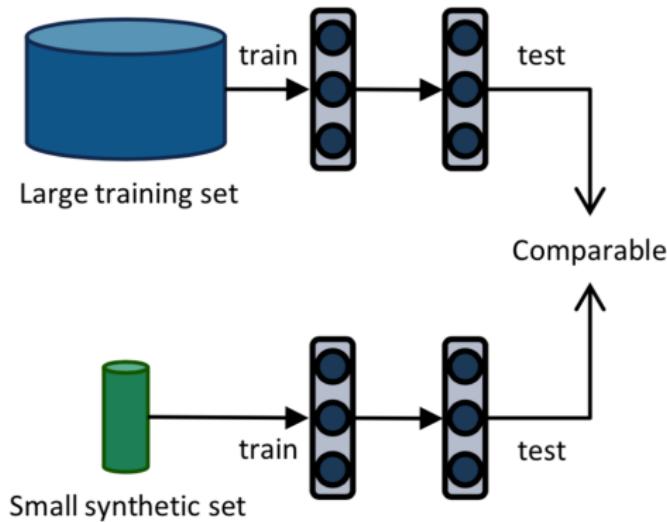
ICML 2022

SEOUL
NATIONAL
UNIVERSITY

NAVER AI

About dataset condensation

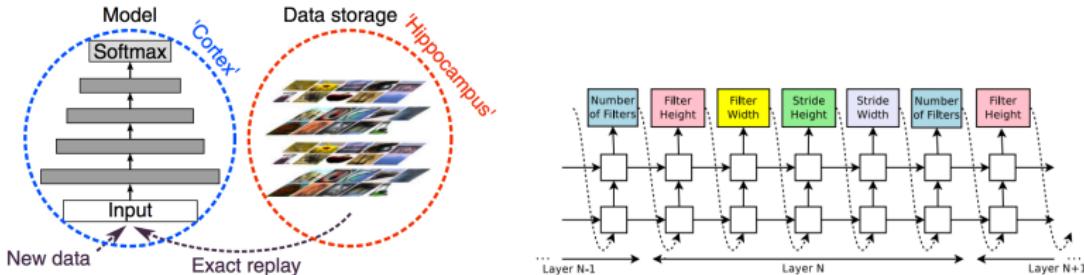
Dataset condensation seeks to **synthesize** a small dataset (\mathcal{S}) that has comparable training performance to the original training set (\mathcal{T}).



About dataset condensation

The synthesized datasets have a variety of applications:

- ▶ increasing the efficiency of replay exemplars in **continual learning**.
- ▶ accelerating **neural architecture search**.



Ven et al., Brain-inspired replay for continual learning with artificial neural networks, Nature, 2020

Zoph et al., Neural Architecture Search with Reinforcement Learning, ICLR, 2017

Shortcomings of existing methods

1. Inefficiency

- Pixel-level optimization of the synthetic data:

$$\mathcal{S}^* = \underset{\mathcal{S} \in \mathbb{R}^{n \times m}}{\operatorname{argmin}} D(\mathcal{S}, \mathcal{T}).$$

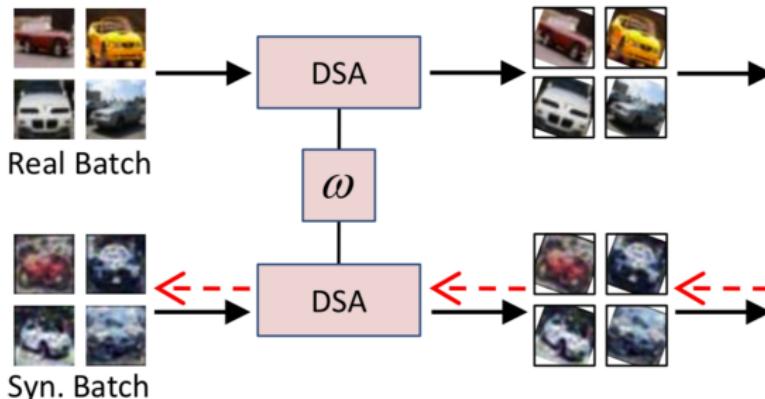


Figure: Gradient matching with differentiable siamese augmentation (DSA).

Shortcomings of existing methods

1. Inefficiency
 - Pixel-level optimization of the synthetic data.
2. **Small-scale** experiments
 - Only tackles small-scale benchmarks such as **CIFAR-10**.
 - Test with a **3-layer** convolutional network which has low upper-bound performance.

Shortcomings of existing methods

1. Inefficiency
 - Pixel-level optimization of the synthetic data.
2. Small-scale experiments
 - Only tackles small-scale benchmarks such as CIFAR-10.
 - Test with a 3-layer convolutional network which has low upper-bound performance.
3. **Lack of theoretical** interpretation
 - Lacks theoretical understanding of why certain objectives work better.

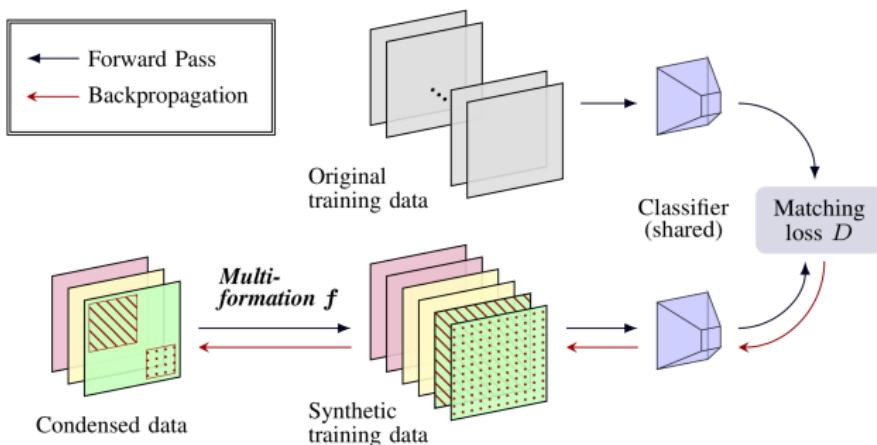
Our contributions

1. Efficiency

- We propose a novel framework with efficient synthetic-data parameterization (*multi-formation*).

$$\mathcal{S}^* = \operatorname{argmin}_{\mathcal{S} \in \mathbb{R}^{n \times m}} D(\mathbf{f}(\mathcal{S}), \mathcal{T}) \quad (\text{Optimization})$$

$$\theta^* = \operatorname{argmin}_{\theta} \ell(\theta; \mathbf{f}(\mathcal{S}^*)). \quad (\text{Evaluation})$$



Our contributions

1. Efficiency
 - We propose a novel framework with efficient synthetic-data parameterization.
2. **Large-scale** experiments
 - Condense high-resolution data (**ImageNet**) and set benchmarks.
 - Multiple test models including ResNet and EfficientNet.

Our contributions: Improved optimization techniques

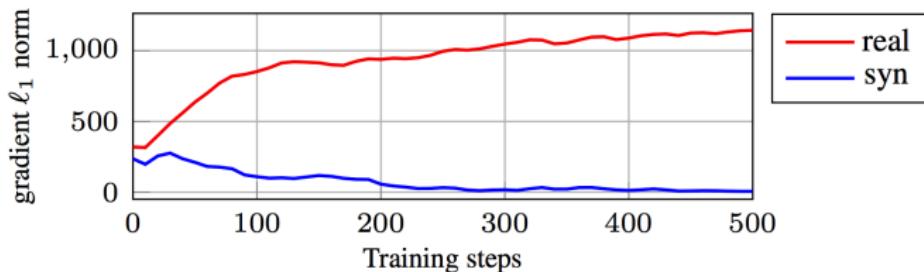


Figure: Gradient norm during the condensation stage.

Existing gradient matching methods suffer from **gradient norm divergence**.

- ▶ We propose effective optimization techniques for regularizing the optimization.

Our contributions

1. Efficiency
 - We propose an efficient synthetic-data parameterization strategy for condensation.
2. Large-scale experiments
 - Condense high-resolution data (ImageNet) and set benchmarks.
 - Multiple test models including ResNet and EfficientNet.
3. **Theoretical** interpretation
 - Our method achieves the **lower bound** of the original objective function.

$$\min_{\mathcal{S} \in \mathbb{R}^{n \times m}} D(f(\mathcal{S}), \mathcal{T}) \leq \min_{\mathcal{S} \in \mathbb{R}^{n \times m}} D(\mathcal{S}, \mathcal{T}).$$

Results: classification (CIFAR-10)

IDC denotes our full methods and *IDC-I* denotes our method without multi-formation.

- ▶ IDC and IDC-I achieve the state-of-the-art performance over various compression ratio (pixel/class) and test models.

Pixel/Class	Test Model	Random	Herding	DSA	DM	IDC-I	IDC
$10 \times 32 \times 32$ (0.2%)	ConvNet-3	37.2	41.7	52.1 [†]	53.8	58.3 (+4.5)	67.5 (+13.7)
	ResNet-10	34.1	35.9	32.9	42.3	50.2 (+7.9)	63.5 (+21.2)
	DenseNet-121	36.5	36.7	34.5	39.0	49.5 (+10.5)	61.6 (+22.6)
$50 \times 32 \times 32$ (1%)	ConvNet-3	56.5	59.8	60.6 [†]	65.6	69.5 (+3.9)	74.5 (+8.9)
	ResNet-10	51.2	56.5	49.7	58.6	65.7 (+7.1)	72.4 (+13.8)
	DenseNet-121	55.8	59.0	49.1	57.4	63.1 (+4.1)	71.8 (+12.8)

Table: CIFAR-10 top-1 accuracy.

Results: classification (ImageNet)

Our method outperforms on high-resolution data (ImageNet subset).

- The gains range from 3%p to 26%p!

Class	Pixel/Class	Test Model	Random	Hherding	DSA	DM	IDC-I	IDC
10	10×224×224 (0.8%)	ResNetAP-10	46.9	50.4	52.7	52.3	61.4 (+8.7)	72.8 (+10.5)
		ResNet-18	43.3	47.0	44.1	41.7	56.2 (+9.2)	73.6 (+26.6)
		EfficientNet-B0	46.3	50.2	48.3	45.0	58.7 (+8.5)	74.7 (+24.5)
100	10×224×224 (0.8%)	ResNetAP-10	20.7	22.6	21.8	22.3	29.2 (+6.6)	46.7 (+24.1)
		ResNet-18	15.7	15.9	13.5	15.8	23.3 (+7.4)	40.1 (+24.2)
		EfficientNet-B0	22.4	24.5	19.9	20.7	27.7 (+3.2)	36.3 (+11.8)

Table: ImageNet subset top-1 accuracy.

Results: classification (Speech Commands)

We also verify the effectiveness of our approach on speech data.

Spectrogram/ Class	Random	Herding	DSA	DM	IDC-I	IDC
10×64×64 (1%)	42.6	56.2	65.0	69.1	73.3 (+4.2)	82.9 (+13.8)
20×64×64 (2%)	57.0	72.9	74.0	77.2	83.0 (+5.8)	86.6 (+9.4)

Table: Google Speech Commands top-1 accuracy.

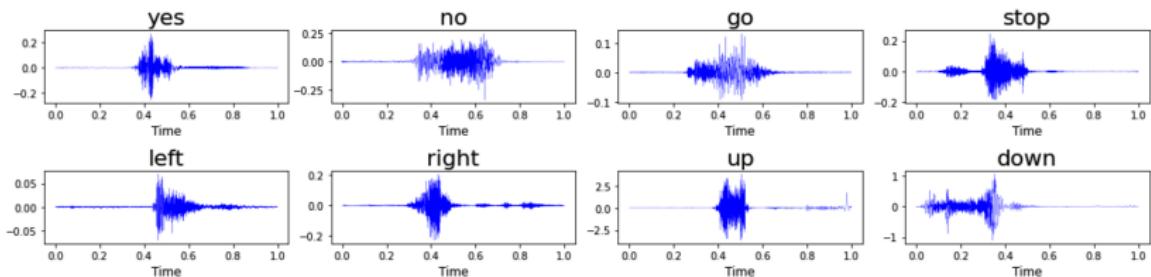


Figure: Condensed speech samples.

Results: continual learning

Our condensed data shows the best performance on exemplar-based continual learning setting.

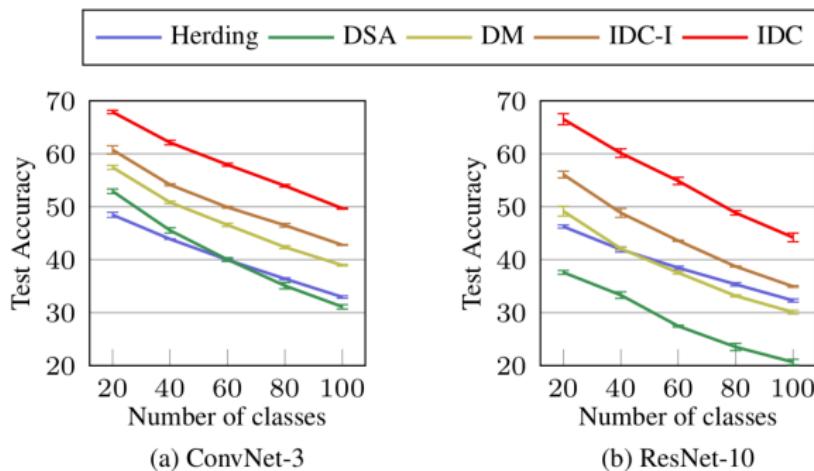


Figure: Class incremental learning on CIFAR-100.

Qualitative results

Lorikeet

Bottle cap

Cabbage

Shih-Tzu

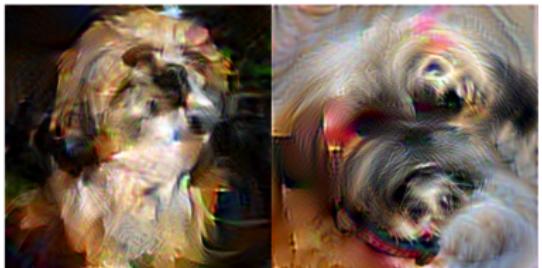


Figure: Representative synthetic data samples from ImageNet.

Conclusion

- ▶ We propose a novel condensation algorithm with **synthetic-data parameterization** for efficient condensation.
- ▶ Our method achieves the **best condensation performance** on vision and audio domains with various test models and compression ratios.
- ▶ Our method also shows promising results on exemplar-based continual learning.
- ▶ [https://github.com/snu-mllab/
Efficient-Dataset-Condensation](https://github.com/snu-mllab/Efficient-Dataset-Condensation)

