Iterative Double Sketching for Faster Least-Squares Optimization

Rui Wang Yanyan Ouyang Wangli Xu

Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing 100872, China

Problem Setting

Overdetermined linear least-squares problem:

- Input data:
- Data maitrx $\mathbf{A}=\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right)^{\top} \in \mathbb{R}^{N \times d}$ with full column rank.
- Observations $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)^{\top} \in \mathbb{R}^{N}$.
- Objective:

$$
\mathbf{x}^{*}:=\underset{\mathbf{x} \in \mathbb{R}^{d}}{\arg \min }\left\{f(\mathbf{x} ; \mathbf{A}, \mathbf{y}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{y}\|^{2}\right\}
$$

- Exact solution:
- Gradient $\nabla f(\mathbf{x} ; \mathbf{A}, \mathbf{y}):=\mathbf{A}^{\top}(\mathbf{A} \mathbf{x}-\mathbf{y})$.
- Hessian $\mathbf{A}^{\top} \mathbf{A}$.
- From any initial point \mathbf{x}_{0}, one Newton iteration yields the exact solution:

$$
\mathbf{x}^{*}=\mathbf{x}_{0}-\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \nabla f\left(\mathbf{x}_{0} ; \mathbf{A}, \mathbf{y}\right) .
$$

- Computing time: $O\left(N d^{2}\right)$.

Iterative Hessian Sketch (IHS) algorithm

The computing time $O\left(N d^{2}\right)$ can be improved if an approximate solution with small random error is allowed.

- IHS: proposed by Pilanci and Wainwright (2016).
- Idea: Sketched Hessian + Iteration
- Formula:

$$
\mathbf{x}_{t+1}=\mathbf{x}_{t}-\left(\mathbf{A}^{\top} \mathbf{S}_{t}^{\top} \mathbf{S}_{t} \mathbf{A}\right)^{-1} \nabla f\left(\mathbf{x}_{t} ; \mathbf{A}, \mathbf{y}\right), \quad t=1, \ldots, T
$$

where $\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots$ are i.i.d. $r \times N$ random sketching matrices.

- Computing time:
- Lacotte and Pilanci (2020): a variant of IHS.
- ϵ relative error: $\left\|\mathbf{A}\left(\mathbf{x}_{T}-\mathbf{x}^{*}\right)\right\| \leq \epsilon\left\|\mathbf{A}\left(\mathbf{x}_{0}-\mathbf{x}^{*}\right)\right\|$.
- Computing time: $O\left(\left(\log (d)+\log \left(\frac{1}{\epsilon}\right)\right) N d+d^{3}\right)$.

The goal

Further reduce the computing time.

- Computational bottleneck of Newton method:
- The first computational bottleneck:
- The Hessian $\mathbf{A}^{\top} \mathbf{A}$.
- Computing time $O\left(N d^{2}\right)$.
- The second computational bottleneck:
- The gradient $\nabla f(\mathbf{x} ; \mathbf{A}, \mathbf{y})=\mathbf{A}^{\top}(\mathbf{A} \mathbf{x}-\mathbf{y})$.
- Computing time $O(N d)$.
- IHS uses sketching to approximate the Hessian.
- Our idea: approximate both the gradient and the Hessian.

Iterative Double Sketching (IDS) Framework

- Hessian sketching:
- Fixed Hessian sketching across all iterations: $\tilde{\mathbf{S}} \in \mathbb{R}^{r \times N}$.
- sketched Hessian: $\tilde{\mathbf{H}}:=\mathbf{A}^{\top} \tilde{\mathbf{S}}^{\top} \tilde{\mathbf{S}} \mathbf{A}$.
- Initial point: $\mathbf{x}_{0}:=\tilde{\mathbf{H}}^{-1} \mathbf{A}^{\top} \tilde{\mathbf{S}}^{\top} \tilde{\mathbf{S}} \mathbf{y}$.
- Gradient sketching for $t=0, \ldots, T-1$:
- m_{t} : sketch size when computing x_{t+1}.
$-\mathbf{S}_{t} \in \mathbb{R}^{m_{t} \times N}$: gradient sketching matrix when computing \mathbf{x}_{t+1}.
- Update formula:

$$
\mathbf{x}_{t+1}=\mathbf{x}_{t}-\mu \tilde{\mathbf{H}}^{-1} \nabla f\left(\mathbf{x}_{t} ; \mathbf{S}_{t} \mathbf{A}, \mathbf{S}_{t} \mathbf{y}\right)
$$

where $\mu>0$ is the step size parameter.

- Define $T^{\dagger}:=\min \left(\left\{t: 0 \leq t<T\right.\right.$ and $\left.\left.m_{t}=N\right\} \cup\{T\}\right)$.
- For $t=0, \ldots, T^{\dagger}-1$, sketched data is used to approximate the gradient;
- For $t=T^{\dagger}, \ldots, T-1$, the full data is used to compute the exact gradient.

Generic IDS algorithm

Algorithm 1 Generic iterative double sketching
Input: $\mu, T, \tilde{\mathbf{S}} \mathbf{A},\left(\mathbf{S}_{t} \mathbf{A}, \mathbf{S}_{t} \mathbf{y}\right), t=0, \ldots, T-1$
$\tilde{\mathbf{H}}^{-1} \leftarrow\left(\mathbf{A}^{\top} \tilde{\mathbf{S}}^{\top} \tilde{\mathbf{S}} \mathbf{A}\right)^{-1}$
$\mathbf{x}_{0} \leftarrow \tilde{\mathbf{H}}^{-1} \mathbf{A}^{\top} \tilde{\mathbf{S}}^{\top} \tilde{\mathbf{S}} \mathbf{y}$
for $t \leftarrow 0$ to $T-1$ do

$$
\mathbf{x}_{t+1} \leftarrow \mathbf{x}_{t}-\mu \tilde{\mathbf{H}}^{-1} \nabla f\left(\mathbf{x}_{t} ; \mathbf{S}_{t} \mathbf{A}, \mathbf{S}_{t} \mathbf{y}\right)
$$

end for
Return \mathbf{x}_{T}

Challenges:

1. The choice of the sketch size m_{t}.
2. The computation of $\mathbf{S}_{t} \mathbf{A}, \mathbf{S}_{t} \mathbf{y}$ requires $O(N d)$ time, too slow.

Optimal choice of sketche size with Gaussian sketching

- Under certain conditions, we prove that asymptotically, the optimal sketch size is

$$
m_{t}=\min (c \sqrt{g(t, T)}, N)
$$

where $g(t, T)=C(T-t-1) \frac{d^{T-t}}{r^{T-t-1}}, C(n)=\frac{(2 n)!}{(n+1)!n!}$ and $c>0$ is a constant.

- Note: $\frac{m_{t+1}}{m_{t}}$ is approximately a constant.
- Guidance for general sketching: choose $\frac{m_{t+1}}{m_{t}}$ to be a constant.

IDS with iteration efficient sketching: Sketching

- We choose $\frac{m_{t+1}}{m_{t}}=2$.
- Idea: sequentially compute the sketched data in reverse order $\left(\mathbf{S}_{T^{\dagger}-1} \mathbf{A}, \mathbf{S}_{T^{\dagger}-1} \mathbf{y}\right), \ldots,\left(\mathbf{S}_{0} \mathbf{A}, \mathbf{S}_{0} \mathbf{y}\right)$.
- First stage, $t=T^{\dagger}-1, \ldots, T^{\diamond}$:
- $\mathbf{S}_{t}:=\mathbf{G}_{m_{t}, N}^{*} \mathbf{D}_{N} \mathbf{P}_{N}$.
- $\mathbf{D}_{N} \in \mathbb{R}^{N \times N}$: a diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables.
- $\mathbf{P}_{N} \in \mathbb{R}^{N \times N}$: a uniformly distributed permutation matrix.
- $\mathbf{G}_{m, N}^{*}:=\mathbf{I}_{m} \otimes \mathbf{1}_{\frac{N}{m}}^{\top}$,
- Second stage, $t=T^{\diamond}-1, \ldots, 0$
$-\mathbf{W}_{m_{T \diamond}} \in \mathbb{R}^{m_{T \diamond} \times m_{T^{\diamond}}}$: the Walsh-Hadamard transform.
- $\mathbf{S}_{t}:=\mathbf{G}_{m_{t}, m_{T^{\diamond}}}^{*} \mathbf{D}_{m_{T^{\diamond}}} \mathbf{P}_{m_{T^{\diamond}}} \mathbf{W}_{m_{T^{\diamond}}} \mathbf{S}_{T^{\star}}$.
- $\mathbf{S}_{t} \mathbf{A}$ can be computed from $\mathbf{S}_{t+1} \mathbf{A}$.
- The sketching so defined guarantees good subspace embedding property.

IDS with iteration efficient sketching: Algorithm

Algorithm 3 IDS algorithm with iteration efficient sketching matrices

```
Input: \(\mathbf{A} \in \mathbb{R}^{N \times d}, \mathbf{y} \in \mathbb{R}^{N}, r, m_{0}, T^{\diamond}, T, \mu\)
\(T^{\dagger} \leftarrow \log _{2}\left(\frac{N}{m_{0}}\right)\)
\(\mathbf{A} \leftarrow \mathbf{D}_{N} \mathbf{P}_{N} \mathbf{A} ; \mathbf{y} \leftarrow \mathbf{D}_{N} \mathbf{P}_{N} \mathbf{y} ; \mathbf{S}_{T^{\dagger}} \leftarrow \mathbf{I}_{N} ;\)
for \(t \leftarrow T^{\dagger}-1\) to 0 do
    \(\mathbf{S}_{t} \mathbf{A} \leftarrow\left(\mathbf{I}_{2^{t} m_{0}} \otimes \mathbf{1}_{2}^{\top}\right) \mathbf{S}_{t+1} \mathbf{A} ; \mathbf{S}_{t} \mathbf{y} \leftarrow\left(\mathbf{I}_{2^{t} m_{0}} \otimes \mathbf{1}_{2}^{\top}\right) \mathbf{S}_{t+1} \mathbf{y}\)
    if \(t=T^{\circ}\) then
        \(\mathbf{S}_{T^{\diamond}} \mathbf{A} \leftarrow \mathbf{D}_{m_{T} \diamond} \mathbf{P}_{m_{T} \diamond} \mathbf{W}_{m_{T} \diamond} \mathbf{S}_{T^{\diamond}} \mathbf{A}\)
        \(\mathbf{S}_{T \diamond} \mathbf{y} \leftarrow \mathbf{D}_{m_{T} \diamond} \mathbf{P}_{m_{T} \diamond} \mathbf{W}_{m_{T} \diamond} \mathbf{S}_{T \diamond} \mathbf{y}\)
    end if
end for
\(\tilde{\mathbf{H}}^{-1} \leftarrow\left(\mathbf{A}^{\top} \mathbf{S}_{0}^{\top} \mathbf{S}^{\dagger \top} \mathbf{S}^{\dagger} \mathbf{S}_{0} \mathbf{A}\right)^{-1}\)
\(\mathbf{x}_{0} \leftarrow \tilde{\mathbf{H}}^{-1} \mathbf{A}^{\top} \mathbf{S}_{0}^{\top} \mathbf{S}^{\dagger \top} \mathbf{S}^{\dagger} \mathbf{S}_{0} \mathbf{y}\)
for \(t \leftarrow 0\) to \(T^{\dagger}-1\) do
    \(\mathbf{x}_{t+1} \leftarrow \mathbf{x}_{t}-\mu \tilde{\mathbf{H}}^{-1} \nabla f\left(\mathbf{x}_{t} ; \mathbf{S}_{t} \mathbf{A}, \mathbf{S}_{t} \mathbf{y}\right)\)
end for
for \(t \leftarrow T^{\dagger}\) to \(T-1\) do
    \(\mathbf{x}_{t+1} \leftarrow \mathbf{x}_{t}-\mu \tilde{\mathbf{H}}^{-1} \nabla f\left(\mathbf{x}_{t} ; \mathbf{A}, \mathbf{y}\right)\)
end for
Return \(\mathbf{x}_{T}\)
```


IDS with iteration efficient sketching: Theory

- Under certain conditions, with probability at least $1-3 \delta$,

$$
\left\|\mathbf{A}\left(\mathbf{x}_{T}-\mathbf{x}^{*}\right)\right\| \leq \frac{1}{2^{T}}\left\|\mathbf{A}\left(\mathbf{x}_{0}-\mathbf{x}^{*}\right)\right\|+\frac{4 \sqrt{5}(\sqrt{2}+1)}{2^{T-T^{\dagger}} \delta} \sqrt{\frac{d}{N}}\left\|\mathbf{A} \mathbf{x}^{*}-\mathbf{y}\right\| .
$$

- The computing time to achieve ϵ relative error, i.e., $\left\|\mathbf{A}\left(\mathbf{x}_{T}-\mathbf{x}^{*}\right)\right\| \leq \epsilon\left\|\mathbf{A}\left(\mathbf{x}_{0}-\mathbf{x}^{*}\right)\right\|$. Assume that $N=\Omega\left(d^{2}\right)$, and $\left\|\mathbf{A}\left(\mathbf{x}_{0}-\mathbf{x}^{*}\right)\right\| \asymp \sqrt{\frac{d}{r}}\left\|\mathbf{A} \mathbf{x}^{*}-\mathbf{y}\right\|$.

IHS in Lacotte and Pilanci (2020)
PCG in Lacotte and Pilanci (2021)
IDS

$$
\begin{gathered}
O\left(\left(\log (d)+\log \left(\frac{1}{\epsilon}\right)\right) N d+d^{3}\right) \\
O\left(\left(\log (d)+\max \left(\sqrt{\log \left(\frac{1}{\epsilon}\right)}, \frac{\log \left(\frac{1}{\epsilon}\right)}{\log \left(\frac{N}{d^{2}}\right)}\right)\right) N d\right) \\
O\left(\max \left(1, \log _{2}\left(\frac{1}{\epsilon}\right)-\frac{1}{2} \log _{2}\left(\frac{N}{d(\log (d))^{3}}\right)\right) N d+d^{3} \log (d)\right)
\end{gathered}
$$

Experiments

- $T^{\dagger}=5, T^{\diamond}=1, m_{0}=N / 2^{5}, r=8 d$. Following the result of Özaslan et al. (2019), we adopt the step size $\mu=\frac{(1-d / r)^{2}}{1+d / r}$.
- We use $\Delta_{t}:=\left\|\mathbf{A}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)\right\|^{2}$ to measure the precision of \mathbf{x}_{t}.

(a) Model I. $N=2^{20}, d=2^{6}$.
(b) Model I. $N=2^{20}, d=2^{7}$.

(c) Model II. $N=2^{20}, d=2^{6}$. (d) Model II. $N=2^{20}, d=2^{7}$.

References

Lacotte, J. and Pilanci, M. (2020). Optimal randomized first-order methods for least-squares problems. In ICML, pages 5587-5597.
Lacotte, J. and Pilanci, M. (2021). Faster least squares optimization. arXiv:1911.02675.
Özaslan, I. K., Pilanci, M., and Arikan, O. (2019). Iterative hessian sketch with momentum. In ICASSP, pages 7470-7474.
Pilanci, M. and Wainwright, M. J. (2016). Iterative Hessian sketch: fast and accurate solution approximation for constrained least-squares. Journal of Machine Learning Research, 17:Paper No. 53, 38.

