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Federated Learning with Differential Privacy

local update(x1)
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* Obijectives of private federated learning (FL) Client 1
1 1
> Keep clients data on device @ ocal update(x)
Client 2 —/—"7
> Ensure trained models differentially private (DP) (@ o

e Example: the Gaussian mechanism

>

>

>

Federated Learning with Differential Privacy

local update(x1)

global update(xn)

In each round, server samples a batch of clients
Each client computes a (clipped) local model update (e.g. a local gradient)
Server computes the average of all local updates and adds Gaussian noise satisfying DP1:

VS, P{update(x1, 22, ...,x,) € S} < P {update(z’, z2,...,2,) € S} + 0

Server updates the global model

Indeed, we are mostly interested in Rényi DP, which allows for tighter privacy accounting: Do (M (21, ..., z,)||M(2], ..., zn)) < €

p
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Federated Learning with Differential Privacy

 FL with central differential privacy (DP)

>

>

Server collects local model updates and perturbs them
Sounds great, unless the server is not trusted...

FL with local DP

>

>

Strongest privacy guarantees
Poor utility compared to central DP

FL with distributed DP

>

>

Clients locally perturb their own model updates

Server aggregates local updates via cryptographic
MPC such as secure aggregation (SecAgg)

Privacy does not rely on the trust to the server

Client 1

g1 = clip (Vo f(w; z1)

Client 2

g2 = clip (Vy f(w; z2)

Client n

gn = clip (V'wf(w; xn)) I_>

Server

/

local DP

satisfies DP

orivate
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Constraints on private FL with SecAgg

gl—>| MI Yy satisfies DP

e The local randomizer needs to be linear over a finite field

 An unbiased estimator is preferred

e Less communication in high privacy regime (with small €)
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Previous solutions of distributed DP

e Previous solutions with SecAgg and DP

> (stochastically) round local updates
> perturb with discrete local noise
> map to a finite field by modular clipping

> examples: binomial [1], distributed discrete Gaussian [2], Skellam][3]

1. randomized rounding

. 'L S

C T; C P ZT; C —

2. adding discrete noise

[1] Suresh Ananda Theertha, et al. “cpSGD: Communication-efficient and differentially-private distributed SGD.” NeurlPS 2018.

[2] Peter Kairouz, et al. “The distributed discrete gaussian mechanism for federated learning with secure aggregation.” ICML 2021.

[3] Naman Argawal, et al. “The skellam mechanism for differentially private federated learning.” NeurlPS 2021.
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e Previous solutions with SecAgg and DP Over a finite field

> (stochastically) round local updates B Linear
> perturb with discrete local noise >4 Unbiased

> map to a finite field by modular clipping [ C icati N\,
ommuhnication E

> examples: binomial [1], distributed discrete Gaussian [2], Skellam][3]

e Potential iIssues

> the modular clipping introduces bias

1. randomized rounding 2. adding discrete noise 3. modular clipping
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[1] Suresh Ananda Theertha, et al. “cpSGD: Communication-efficient and differentially-private distributed SGD.” NeurlPS 2018.
[2] Peter Kairouz, et al. “The distributed discrete gaussian mechanism for federated learning with secure aggregation.” ICML 2021.
[3] Naman Argawal, et al. “The skellam mechanism for differentially private federated learning.” NeurlPS 2021.
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Previous solutions of distributed DP

e Previous solutions with SecAgg and DP Over a finite field

> (stochastically) round local updates B Linear
> perturb with discrete local noise >4 Unbiased

> map to a finite field by modular clipping M C icati N\,
ommuhnication E

> examples: binomial [1], distributed discrete Gaussian [2], Skellam][3]

e Potential iIssues

> the modular clipping introduces bias
> the higher privacy, the larger variance of the noise, resulting in higher communication cost
» Communication cost > co as e — 0

1. randomized rounding 2. adding discrete noise 3. modular clipping
—
-C €T; C —l -C X; C — -C X; C e I_IC X é I

[1] Suresh Ananda Theertha, et al. “cpSGD: Communication-efficient and differentially-private distributed SGD.” NeurlPS 2018.
[2] Peter Kairouz, et al. “The distributed discrete gaussian mechanism for federated learning with secure aggregation.” ICML 2021.
[3] Naman Argawal, et al. “The skellam mechanism for differentially private federated learning.” NeurlPS 2021.
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Our contributions

yields an unbiased estimate of the mean

has communication decreasing with € Privacy-variance trade-offs (a=1.5, c=1, n=16)

0.016 A

PBM, m = 16 (6 bits)
PBM, m = 64 (8 bits)
PBM, m = 256 (9 bits)
Gaussian Mechanism

achieves order-optimal privacy-accuracy trade-off 001 -

allows for numerically computing the exact privacy loss 0015 -

converges to the performance of centralized Gaussian 0010 -

Variance

0.008 -

0.006 -

0.004 A

Renyi DP ( &(a))



The scalar Poisson binomial mechanism (sPBM)

Algorithm (scalar PBM)
Parameters: m € N, 6 < 0.1

For client ¢:
1. Re-scale z; top; € [ — 0,3 + 0]
2. Draw Y; ~ Binom(m, p;)

e 1-d mean estimation problem

> Clienti holds z; € [—¢, ]

_ 1
> Server estimates 1 = - Z T
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The scalar Poisson binomial mechanism (sPBM)

Algorithm (scalar PBM)
Parameters: m € N, 6 < 0.1

For client ¢:
1. Re-scale z; top; € [ — 0,3 + 0]
2. Draw Y; ~ Binom(m, p;)

1-d mean estimation problem
> Clienti holds z; € [—¢, ]

_ 1
> Server estimates 1 = - Z T

A\

l

1. Scaling

xX; := c(Y; — m/2)/m6 yields an unbiased estimator on x;

Yi at most m, so m dictates the communication cost

Higher privacy — decreasing m and @

2. Sampling

/N

Binom(m, p; )




Mean Estimation with sPBM and SecAgg

Algorithm (sPBM)
Parameters: m ¢ N, 6 < 0.1
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Mean Estimation with sPBM and SecAgg

Algorithm (sPBM)
Parameters: m ¢ N, 6 < 0.1

For client 2: server

1. Re-scale x; to p; € [% — 0, % + 6
2. Draw Y; ~ Binom(m, p;)

e 1-d mean estimation problem 0 Key properties of sPBM
> Clienti holds x; € [—¢,¢] > linear, so compatible with SecAgg
1
> Server estimates © = — Z X » (m, 0) jointly characterizes the three-way trade-off of
= privacy, communication, and accuracy.

* Performance guarantees » Communication (dictated by m) decreases with &

o . . . .
> L= oy (ZY — m/2> IS an unbiased estimator with

62

MSE(j1) <

— 4Anmo?

> Per-client communication: log(m+1)+log(n) bits
> Satisfies €(«a)-DP for e(a) > ) (am@Q/n)




Privacy of sPBM

Algorithm (sPBM)
Parameters: m ¢ N, 6 < 0.1

For client ¢:
1. Re-scale z; top; € [ — 0,3 + 0]
2. Draw Y; ~ Binom(m, p;)

 Privacy of sPBM

c(@) = max D, (Zie[n] Binom(m, p;)||Binom(m, pt) + e m Binom(m,pi))




Privacy of sPBM

Algorithm (sPBM)
Parameters: m ¢ N, 6 < 0.1

server

For client ¢:
1. Re-scale z; top; € [ — 0,3 + 0]
2. Draw Y; ~ Binom(m, p;)

e Privacy of sPBM

Binom(m, p1) + ) ;e Binom(m,pi))

e(a) = max D, (Zie[n] Binom(m, p; )

1. By the (quasi) convexity of divergence, maximum occurs when p; € {% — 0, % -+ 9}

2. Decompose the sum via data-processing inequalities

3. Bound the divergence with the sub-Gaussian norm of the likelihood ratio.




Privacy of sPBM

Algorithm (sPBM)
Parameters: m ¢ N, 6 < 0.1

server

7 ZY) ~ )z

For client ¢:
1. Re-scale z; top; € [ — 0,3 + 0]
2. Draw Y; ~ Binom(m, p;)

e Privacy of sPBM

Binom(m, p1) + Zi€[2:n] Binom(m,pi))

e(a) = max D, (Zie[n] Binom(m, p;)

1. By the (quasi) convexity of divergence, maximum occurs when p; € {% — 0, % -+ 9}
2. Decompose the sum via data-processing inequalities

3. Bound the divergence with the sub-Gaussian norm of the likelihood ratio.

e(ar)-DP for e(ar) > Q (amb?/n)
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The Poisson binomial mechanism (PBM)

Algorithm (PBM)

Parameters: m € N, § < 0.1

Input: x4, ...z, € R?, ¢5-norm bound ¢

For client 4:

1. Compute Kashin’s representation z; with ||z;|| ., = © ( )

2. For each coordinate of z;, apply sPBM

S

: 1
Server estimates - > - 2
Server recovers + Y. x; from the (estimated) Kashin’s representation

Kashin’s representation Distributed mean estimation
PBM (n = 1000, d = 250, £, clip = 1.0)

—— 11.0 bits
1 12.0 bits
, ‘ —— 13.0 bits
<3 K ; - —— 14.0 bits
== == (Gaussian
I 10_31

1074 1

MSE

Privacy (&)




Compare with Prior Works

Mean estimation with SecAgg and DP

T1—{ M ¥ satisfies DP

[1] Suresh Ananda Theertha, et al. “cpSGD: Communication-efficient and differentially-private distributed SGD.” NeurlPS 2018.

[2] Peter Kairouz, et al. “The distributed discrete gaussian mechanism for federated learning with secure aggregation.” ICML 2021.
[3] Naman Argawal, et al. “The skellam mechanism for differentially private federated learning.” NeurlPS 2021.

[4] Albert Cheu, et al. “Distributed Differential Privacy via Shuffling.” EuroCrypt 2019.
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Compare with Prior Works

Mean estimation with SecAgg and DP

T1—{ M ¥ satisfies DP

communication MSE bias

PBM | o (dlog (n %)) O (;ji) no
(ED) | oEE)  ves

DDG (dlog (n E )) 05 (;2252) yes
(

: : T ] 2dlog d
binomial (dlog n. %)) 05(6 2 ) yes

Skellam (dlog n-

[1] Suresh Ananda Theertha, et al. “cpSGD: Communication-efficient and differentially-private distributed SGD.” NeurlPS 2018.

[2] Peter Kairouz, et al. “The distributed discrete gaussian mechanism for federated learning with secure aggregation.” ICML 2021.
[3] Naman Argawal, et al. “The skellam mechanism for differentially private federated learning.” NeurlPS 2021.

[4] Albert Cheu, et al. “Distributed Differential Privacy via Shuffling.” EuroCrypt 2019.
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Mean estimation with SecAgg and DP

Compare with Prior Works

satisfies DP

Mean estimation with secure shuffling and DP

communication MSE bias

PBM [ o (wos(n-[2])) | 0s(55) | no
Skellam (dlog (n %)) 05<;2252) yes
o0 ol )] oz el
binomial (dlog <n %)) 05( o) | yes

Compare to [4]: RR with secure shuffling

>

both introduce local binomial noise
under different secure models (SecAgg v.s secure shuffler)
we provide a Renyi DP with numerically tight constants

extend to multi-dimensional mean estimation for FL

[1] Suresh Ananda Theertha, et al. “cpSGD: Communication-efficient and differentially-private distributed SGD.” NeurlPS 2018.
[2] Peter Kairouz, et al. “The distributed discrete gaussian mechanism for federated learning with secure aggregation.” ICML 2021.

[3] Naman Argawal, et al. “The skellam mechanism for differentially private federated learning.” NeurlPS 2021.

[4] Albert Cheu, et al. “Distributed Differential Privacy via Shuffling.” EuroCrypt 2019.
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Summary

communication MSE bias

PBM O(dlog(n-_€2_)> Os 622

no

Skellam|| o (dlog [ n -

yes

|
Wl = ||
|

S
N—— | ~~——

3{\3‘
& O
mw‘ . mw Sy

(s (1% )
DDG || © (dlog (n ;12 )) Os ;2 yes
binomial [ o (dlog (n K )) 05 (CQSJ;gd) yes

e Unbiased mean estimation scheme

e Communication decreases with €




Summary

communication MSE bias

PBM [ o(aos(n[5])) | o (55) | no
Skellam]| o (dlog (n &%) Os (%) yes
o0 [(mlc )]l |oe
binomial || o (dlog (n %)) 05 (Cngl;gd) yes

e Unbiased mean estimation scheme

e Communication decreases with €

e Qrder-optimal privacy-utility trade-off




L 1_’[-/\/1PBM]

)

$2—>[/\/1PBM

]

)

x’n_’[-/\/lPBM

]

)

Summary

server

Zn) ~ )

Unbiased mean estimation scheme

Communication decreases with &€

Order-optimal privacy-utility trade-off

Allows for numerically computing the exact privacy loss

communication MSE bias
2] c’d
PBM O (dlog (n % )) Os (n252) no
R 2
Skellam|f o (dlog (n % ) Os ( - dQ) yes
€ n4e
[ d ]| 2d
DDG | © (dlog (n = )) Os (;252) yes
: : Cd ] c?dlogd
binomial || o (dlog (n = )) Os ( n2€2g ) YES
Privacy-variance trade-offs (a=1.5, c=1, n=16)
00167 —— PBM, m = 16 (6 bits)
- PBM, m = 64 (8 bits)
0.014 1 —— PBM, m = 256 (9 bits)
—— Gaussian Mechanism
0.012 A
_§ 0.010
=
0.008 A
0.006 -
0.004 -

0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9

Renyi DP ( g(a))




