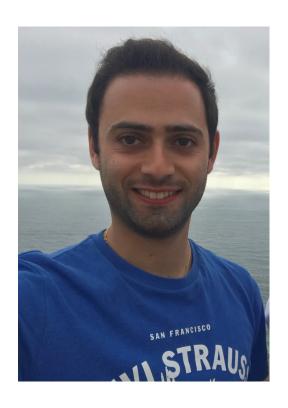
The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation

Wei-Ning Chen
Stanford University

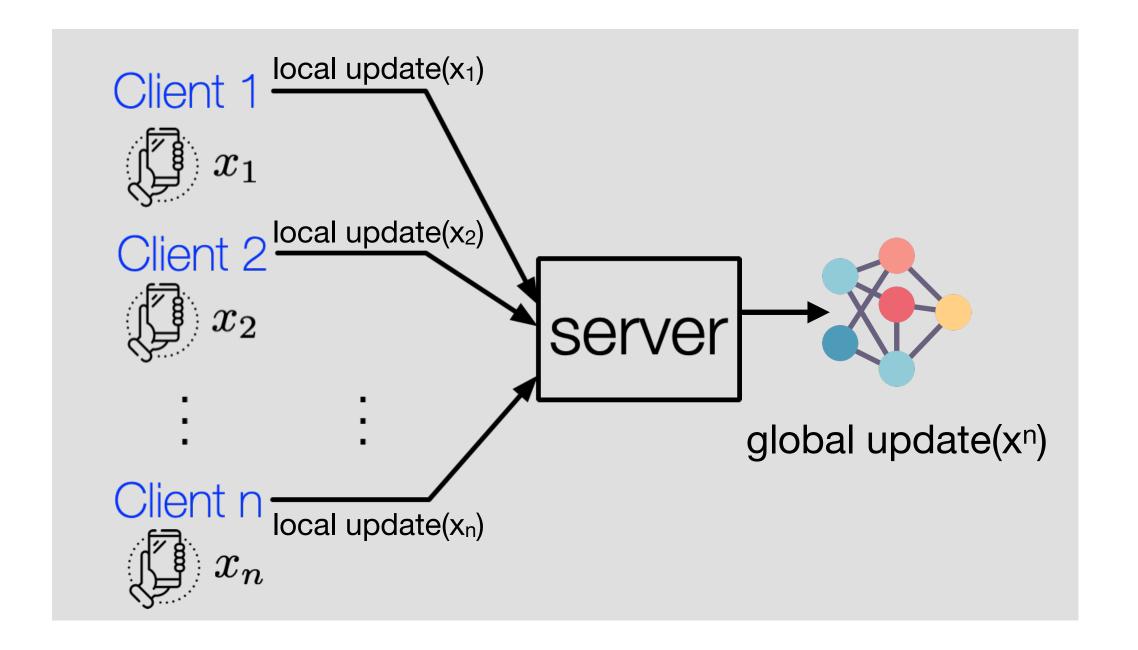
Ayfer Özgür Stanford University

arnord University

Peter Kairouz Google Research

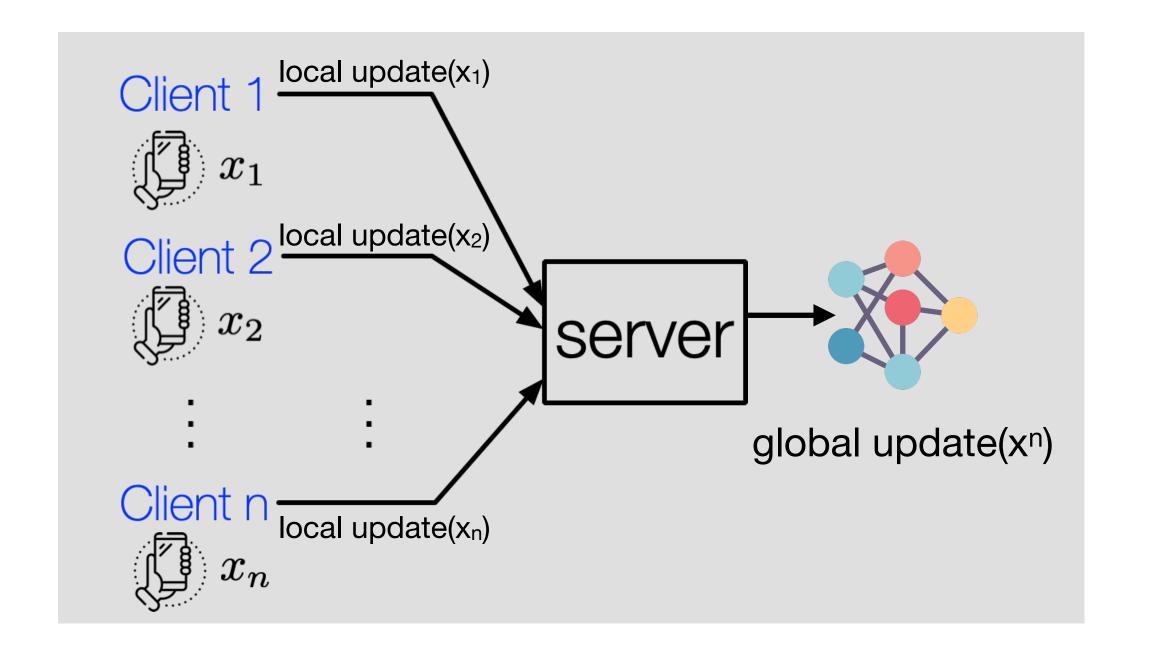


- Objectives of private federated learning (FL)
 - Keep clients data on device
 - Ensure trained models differentially private (DP)



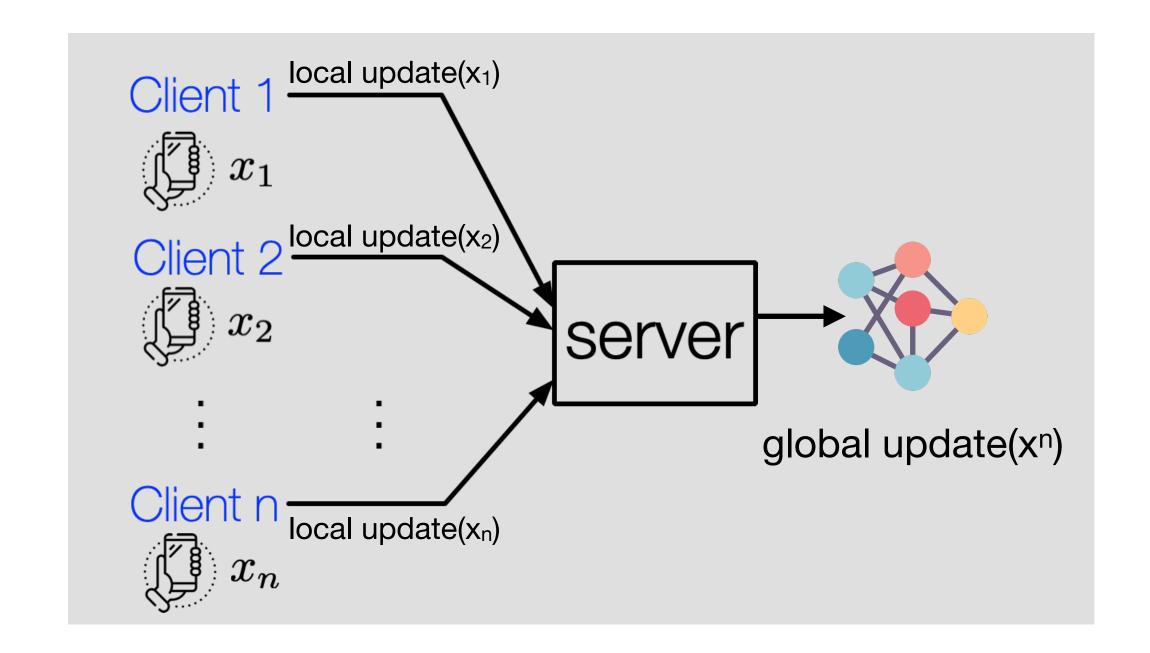
- Objectives of private federated learning (FL)
 - Keep clients data on device
 - Ensure trained models differentially private (DP)

Example: the Gaussian mechanism



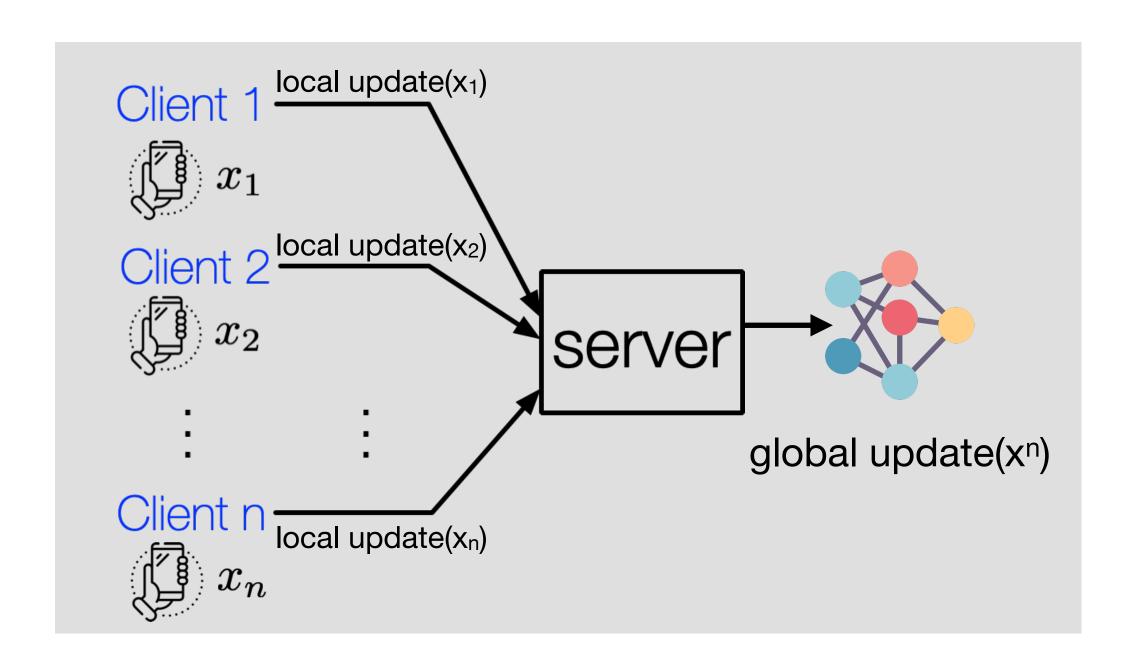
- Objectives of private federated learning (FL)
 - Keep clients data on device
 - Ensure trained models differentially private (DP)

- Example: the Gaussian mechanism
 - In each round, server samples a batch of clients



- Objectives of private federated learning (FL)
 - Keep clients data on device
 - Ensure trained models differentially private (DP)

- Example: the Gaussian mechanism
 - In each round, server samples a batch of clients
 - Each client computes a (clipped) local model update (e.g. a local gradient)

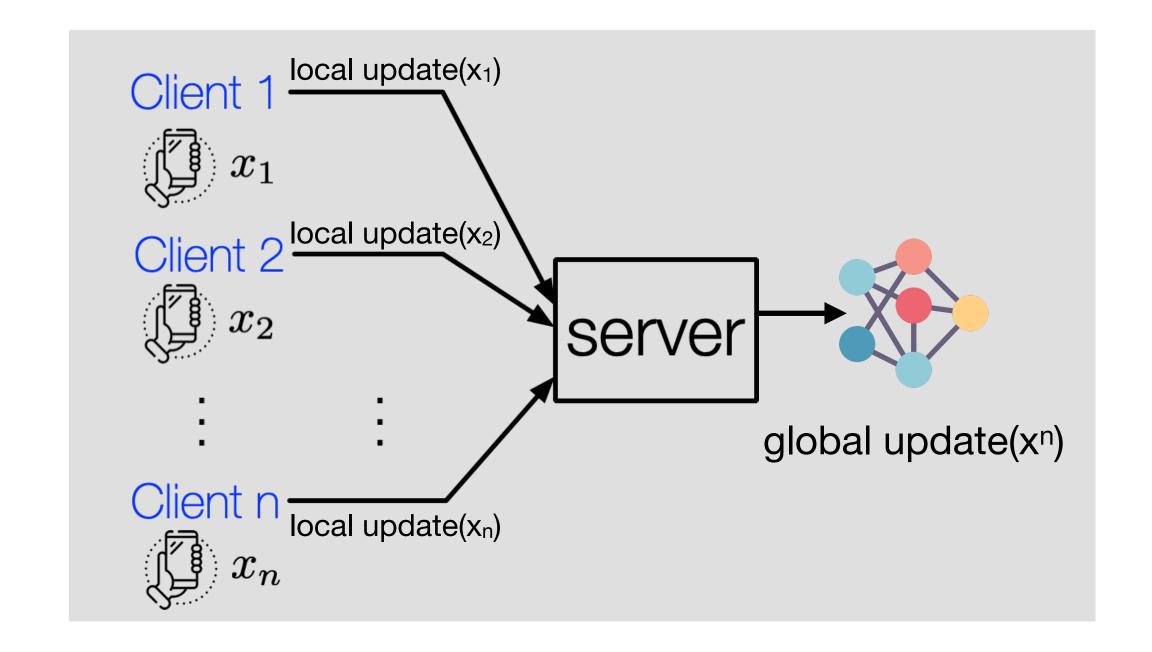


- Objectives of private federated learning (FL)
 - Keep clients data on device
 - Ensure trained models differentially private (DP)

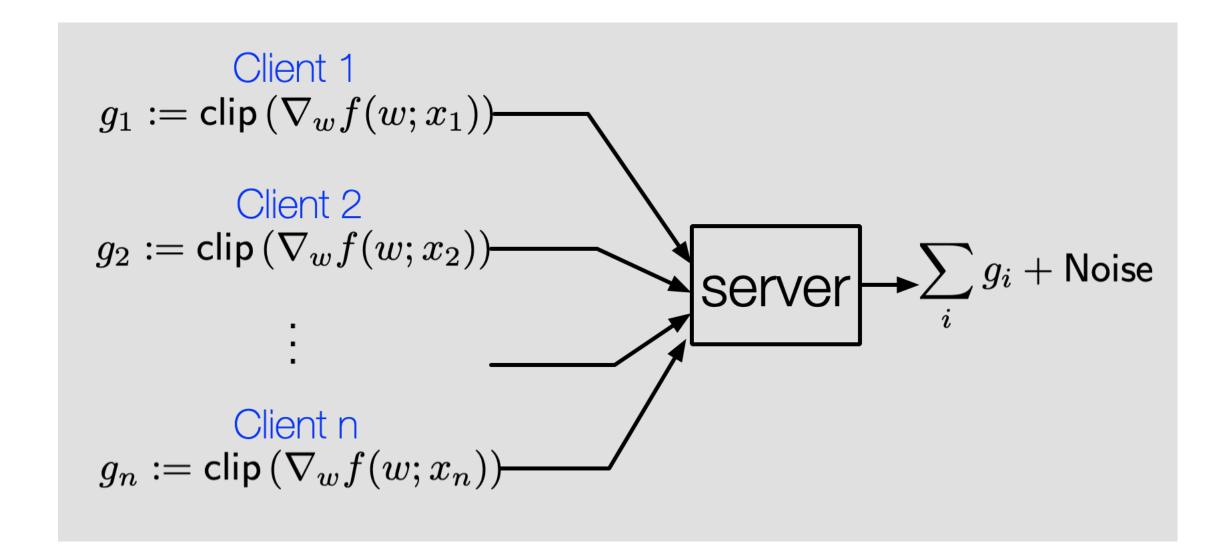
- Example: the Gaussian mechanism
 - In each round, server samples a batch of clients
 - Each client computes a (clipped) local model update (e.g. a local gradient)
 - Server computes the average of all local updates and adds Gaussian noise satisfying DP1:

$$\forall \mathcal{S}, \mathbb{P} \left\{ \mathsf{update}(x_1, x_2, ..., x_n) \in \mathcal{S} \right\} \leq e^{\varepsilon} \mathbb{P} \left\{ \mathsf{update}(x_1', x_2, ..., x_n) \in \mathcal{S} \right\} + \delta$$

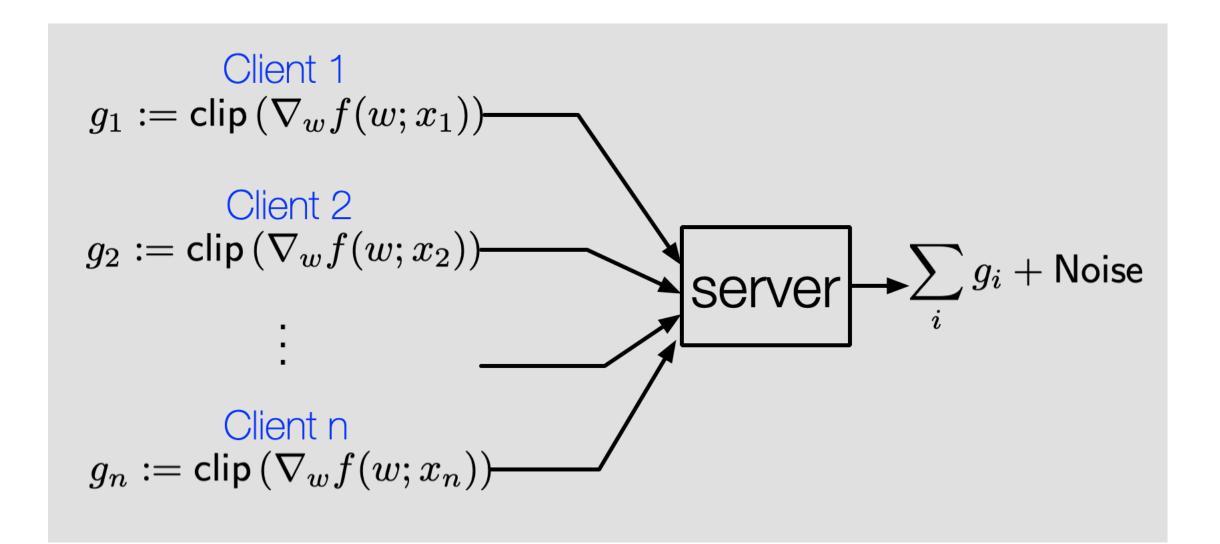
Server updates the global model



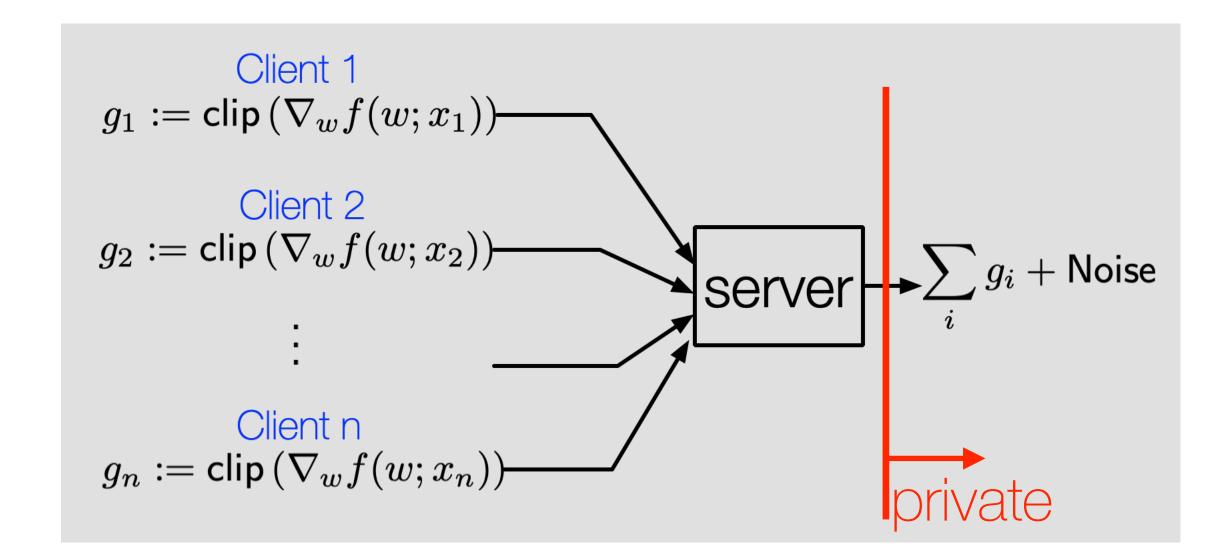
• FL with **central** differential privacy (DP)



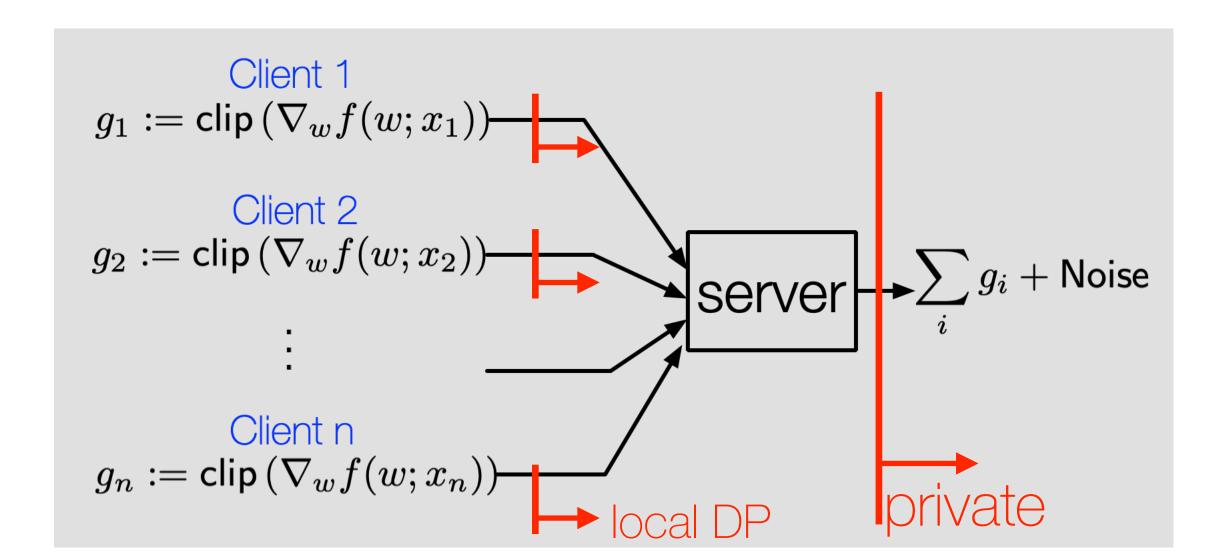
- FL with central differential privacy (DP)
 - Server collects local model updates and perturbs them



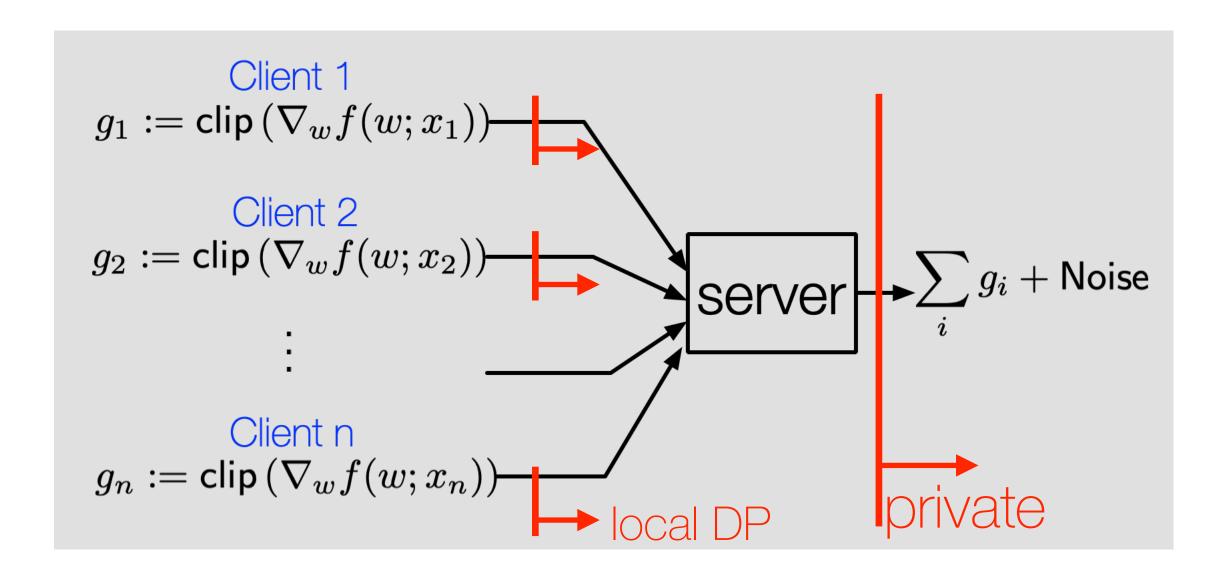
- FL with central differential privacy (DP)
 - Server collects local model updates and perturbs them
 - Sounds great, unless the server is not trusted...

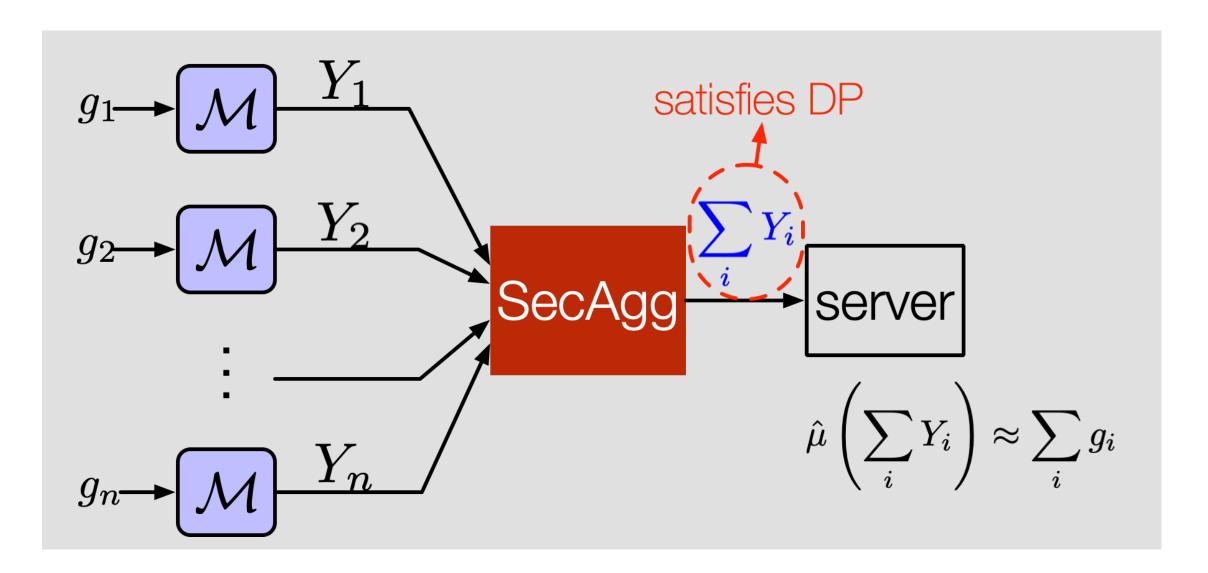


- FL with central differential privacy (DP)
 - Server collects local model updates and perturbs them
 - Sounds great, unless the server is not trusted...
- FL with local DP
 - Strongest privacy guarantees
 - Poor utility compared to central DP

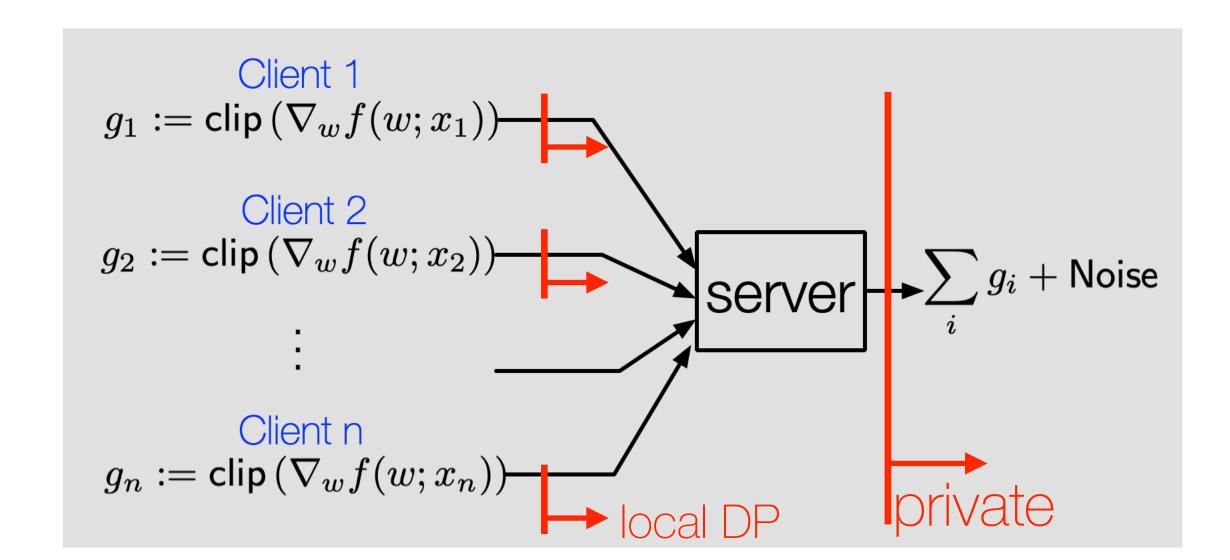


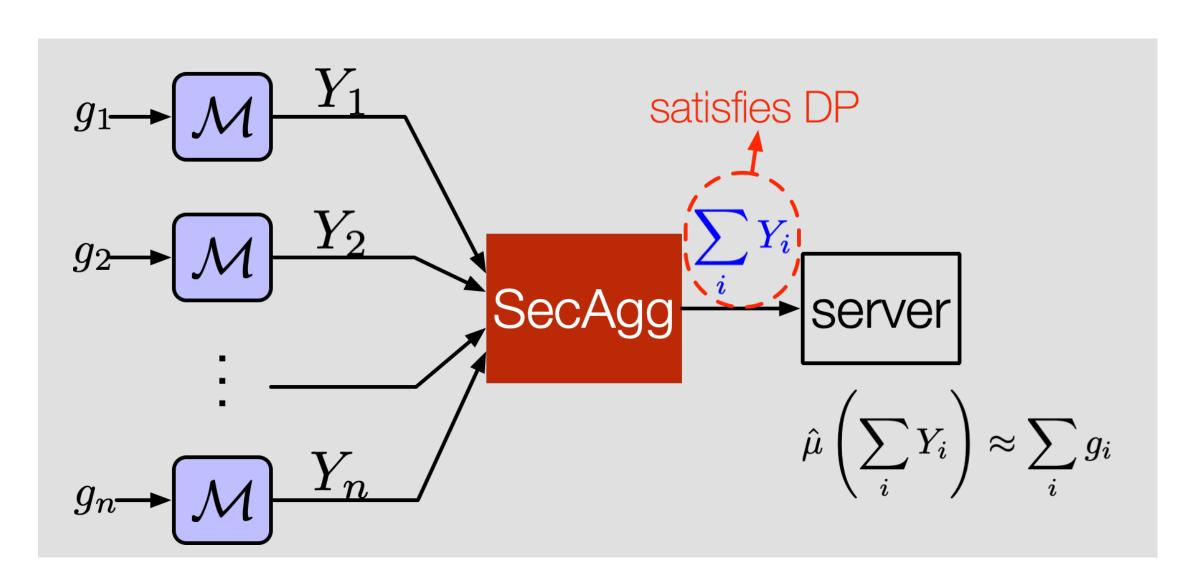
- FL with central differential privacy (DP)
 - Server collects local model updates and perturbs them
 - Sounds great, unless the server is not trusted...
- FL with local DP
 - Strongest privacy guarantees
 - Poor utility compared to central DP
- FL with distributed DP

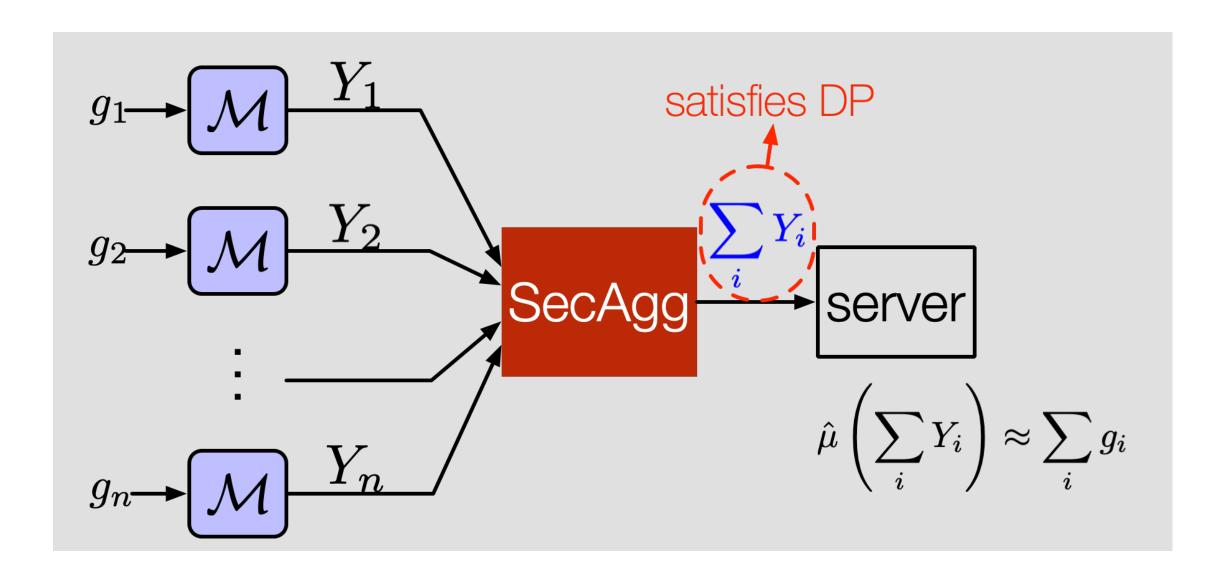


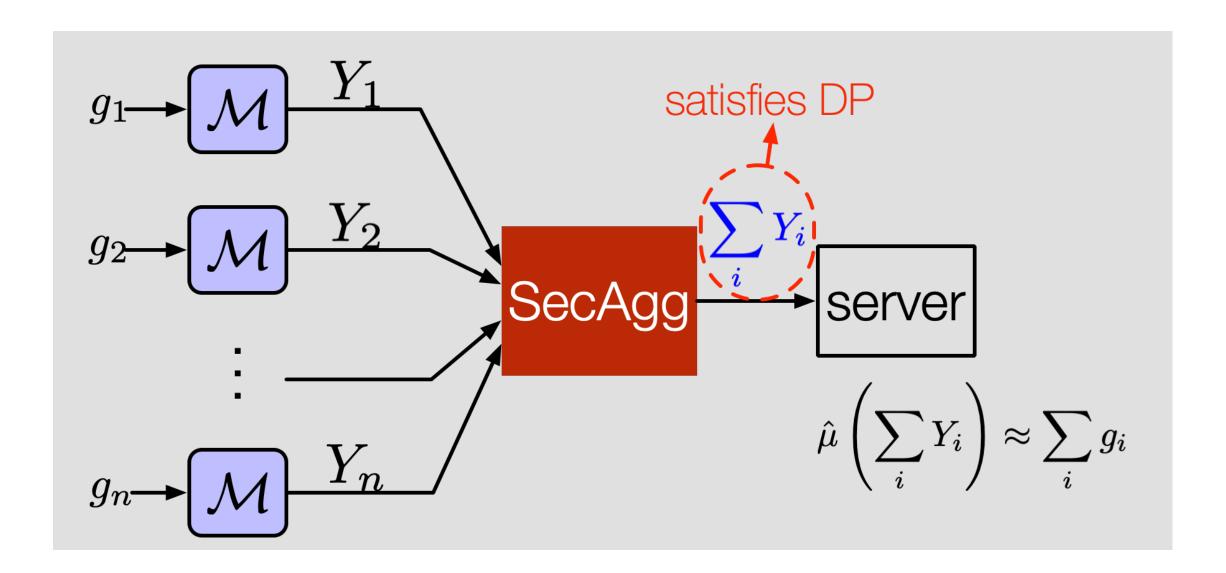


- FL with central differential privacy (DP)
 - Server collects local model updates and perturbs them
 - Sounds great, unless the server is not trusted...
- FL with local DP
 - Strongest privacy guarantees
 - Poor utility compared to central DP
- FL with distributed DP
 - Clients locally perturb their own model updates
 - Server aggregates local updates via cryptographic
 MPC such as secure aggregation (SecAgg)
 - Privacy does not rely on the trust to the server

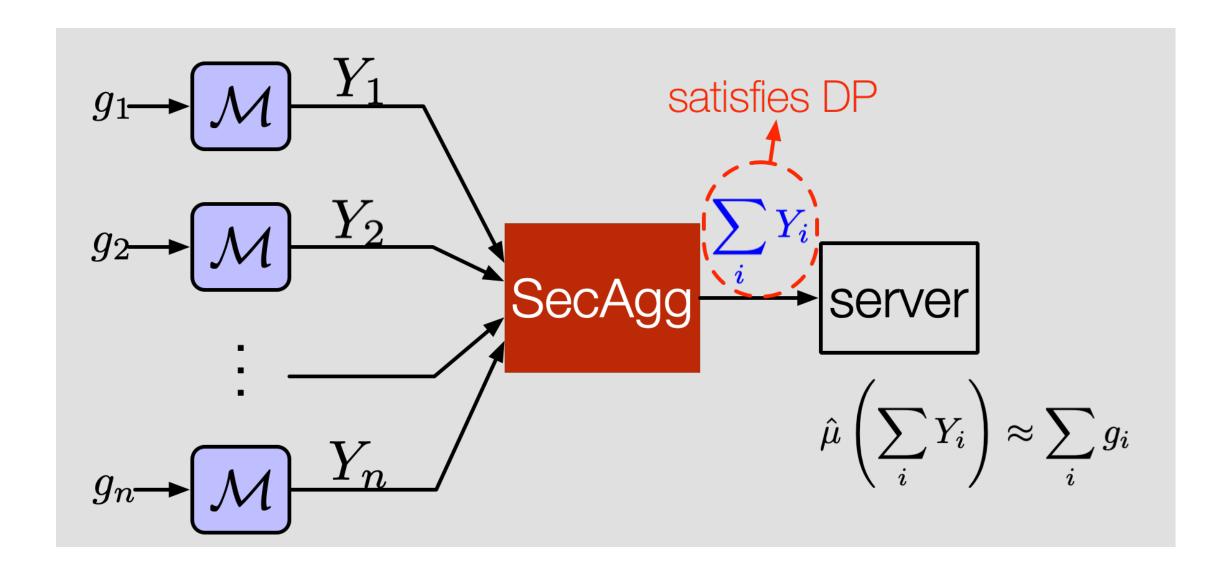




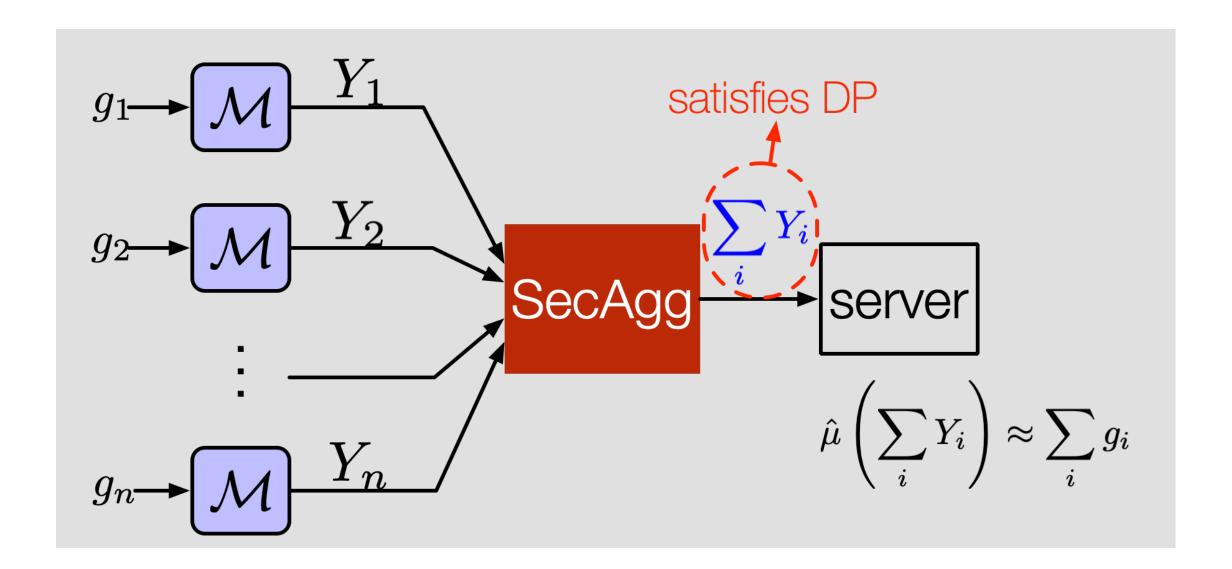




• The local randomizer needs to be linear over a finite field

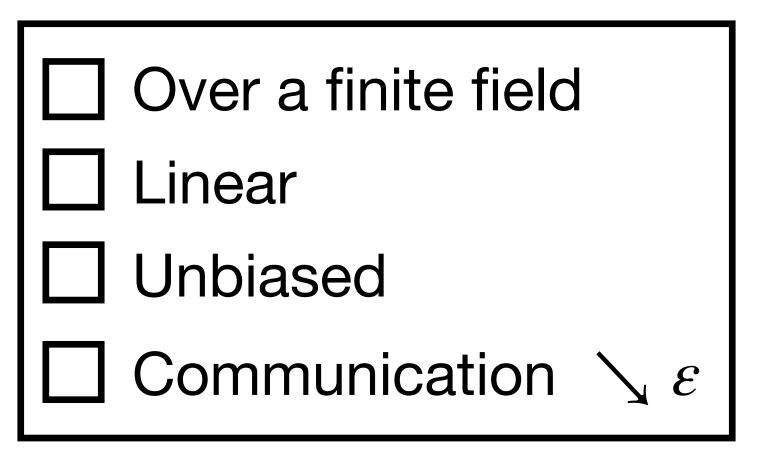


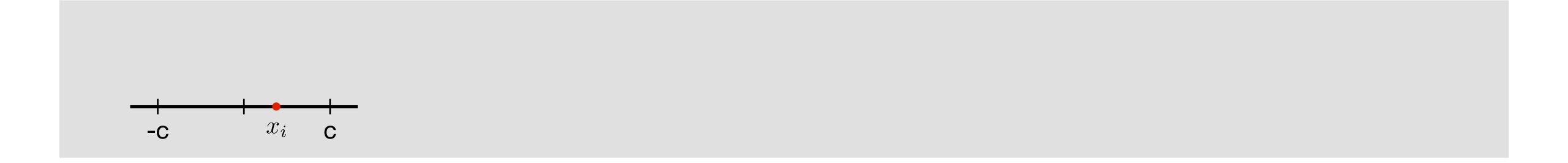
- The local randomizer needs to be linear over a finite field
- An unbiased estimator is preferred



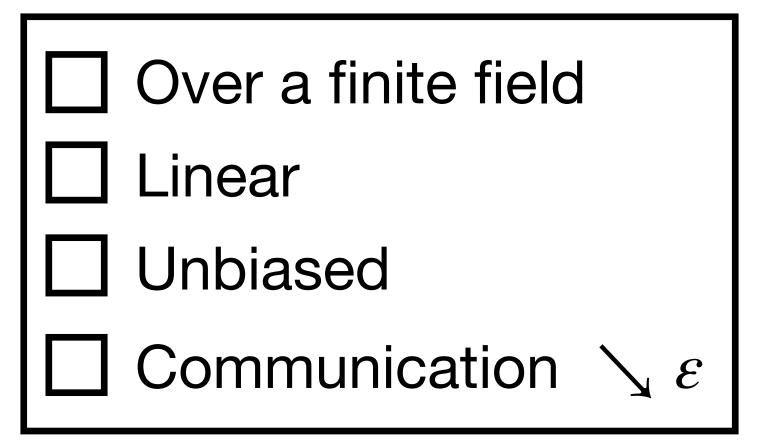
- The local randomizer needs to be linear over a finite field
- An unbiased estimator is preferred
- Less communication in high privacy regime (with small ε)

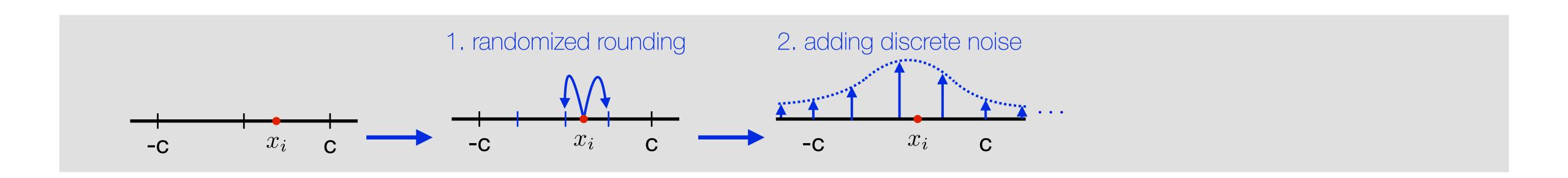
Previous solutions with SecAgg and DP



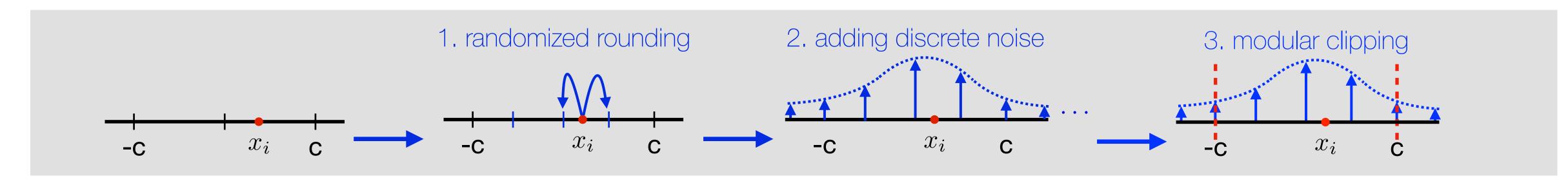


- Previous solutions with SecAgg and DP
 - (stochastically) round local updates
 - perturb with discrete local noise





- Previous solutions with SecAgg and DP
 - (stochastically) round local updates
 - perturb with discrete local noise
 - map to a finite field by modular clipping
 - examples: binomial [1], distributed discrete Gaussian [2], Skellam[3]

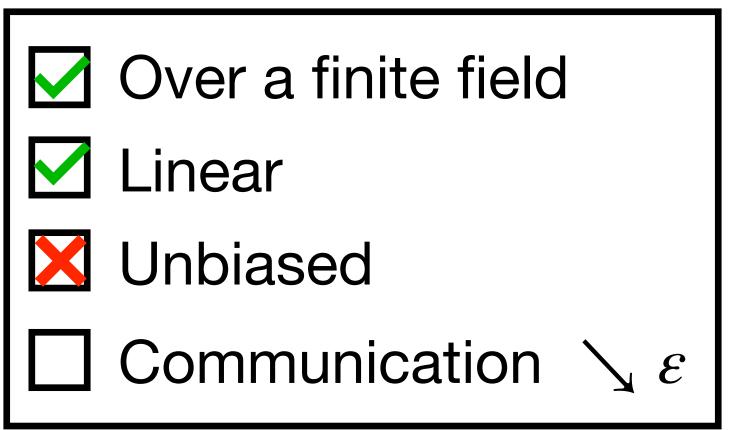


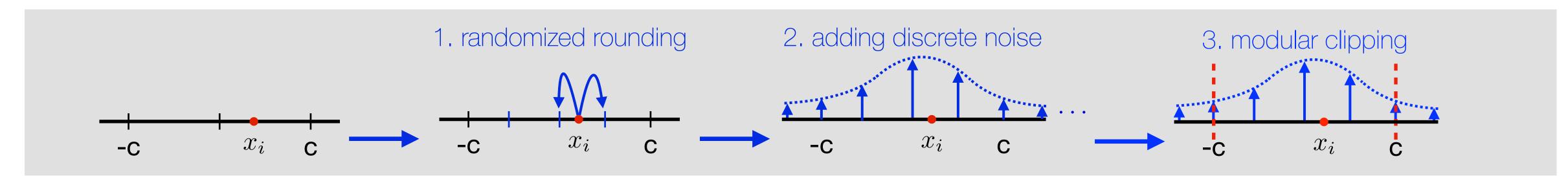
^[1] Suresh Ananda Theertha, et al. "cpSGD: Communication-efficient and differentially-private distributed SGD." NeurIPS 2018.

^[2] Peter Kairouz, et al. "The distributed discrete gaussian mechanism for federated learning with secure aggregation." ICML 2021.

^[3] Naman Argawal, et al. "The skellam mechanism for differentially private federated learning." NeurIPS 2021.

- Previous solutions with SecAgg and DP
 - (stochastically) round local updates
 - perturb with discrete local noise
 - map to a finite field by modular clipping
 - examples: binomial [1], distributed discrete Gaussian [2], Skellam[3]
- Potential issues
 - the modular clipping introduces bias





^[1] Suresh Ananda Theertha, et al. "cpSGD: Communication-efficient and differentially-private distributed SGD." NeurIPS 2018.

^[2] Peter Kairouz, et al. "The distributed discrete gaussian mechanism for federated learning with secure aggregation." ICML 2021.

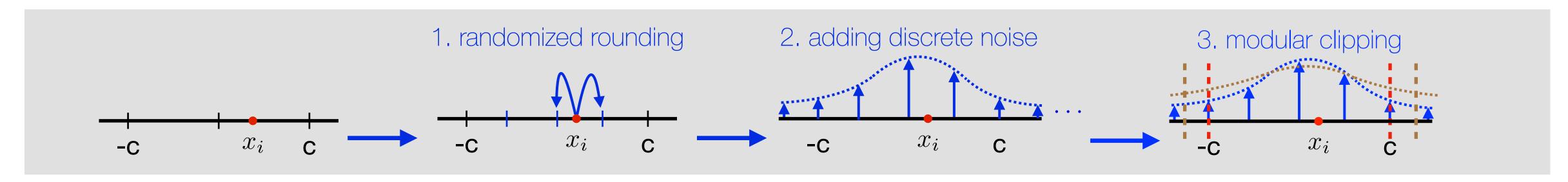
^[3] Naman Argawal, et al. "The skellam mechanism for differentially private federated learning." NeurIPS 2021.

- Previous solutions with SecAgg and DP
 - (stochastically) round local updates
 - perturb with discrete local noise
 - map to a finite field by modular clipping
 - examples: binomial [1], distributed discrete Gaussian [2], Skellam[3]

- Over a finite field
- Linear
- Unbiased
- Communication \

Potential issues

- the modular clipping introduces bias
- the higher privacy, the larger variance of the noise, resulting in higher communication cost
- ▶ Communication cost $\rightarrow \infty$ as $\varepsilon \rightarrow 0$



^[1] Suresh Ananda Theertha, et al. "cpSGD: Communication-efficient and differentially-private distributed SGD." NeurIPS 2018.

^[2] Peter Kairouz, et al. "The distributed discrete gaussian mechanism for federated learning with secure aggregation." ICML 2021.

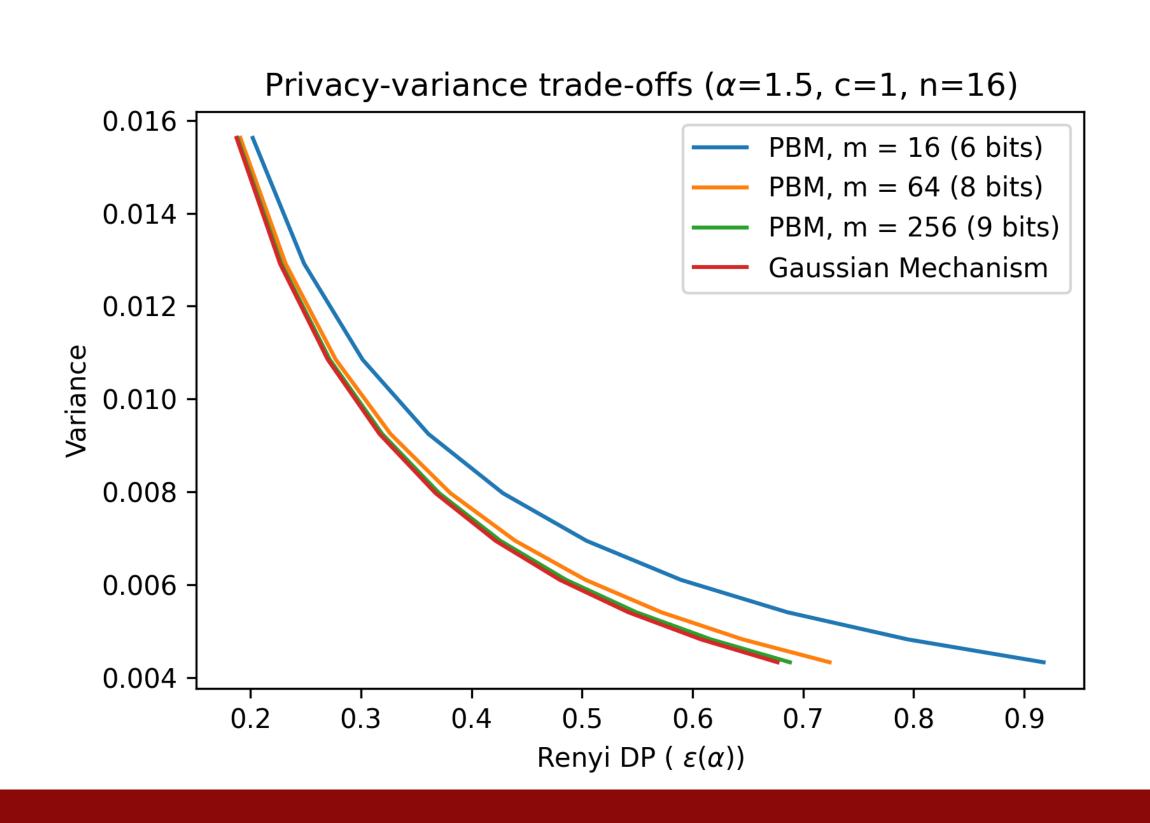
^[3] Naman Argawal, et al. "The skellam mechanism for differentially private federated learning." NeurIPS 2021.

Our contributions

- We propose the Poisson-binomial mechanism (PBM), which
 - yields an **unbiased** estimate of the mean
 - has communication decreasing with ε

Our contributions

- We propose the Poisson-binomial mechanism (PBM), which
 - yields an **unbiased** estimate of the mean
 - ightharpoonup has communication **decreasing** with arepsilon
 - achieves order-optimal privacy-accuracy trade-off
 - allows for numerically computing the exact privacy loss
 - converges to the performance of centralized Gaussian



Algorithm (scalar PBM)

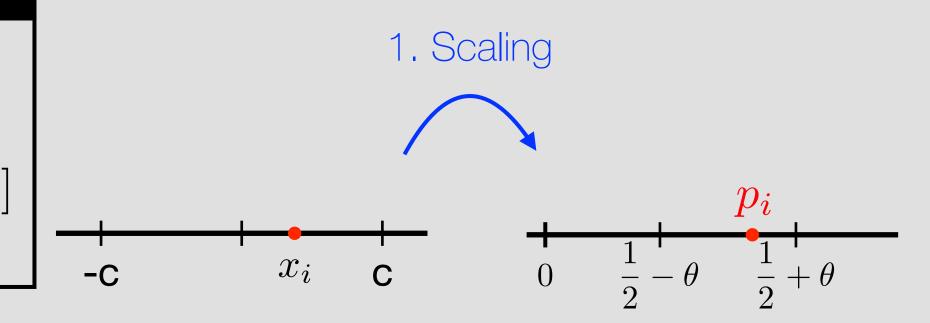
Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \text{Binom}(m, p_i)$
- 1-d mean estimation problem
 - Client i holds $x_i \in [-c, c]$
 - Server estimates $\mu = \frac{1}{n} \sum_{i} x_{i}$

Algorithm (scalar PBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \text{Binom}(m, p_i)$

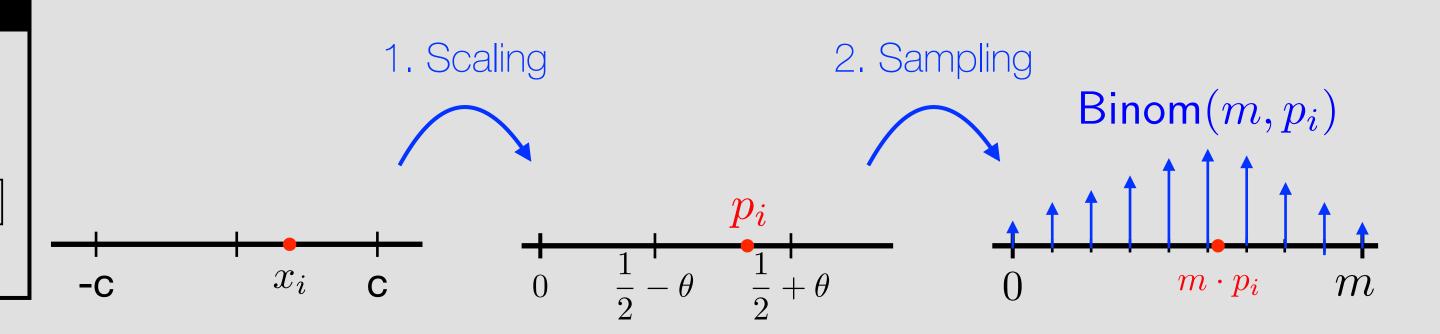


- 1-d mean estimation problem
 - Client i holds $x_i \in [-c, c]$
 - Server estimates $\mu = \frac{1}{n} \sum_{i} x_{i}$

Algorithm (scalar PBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \text{Binom}(m, p_i)$

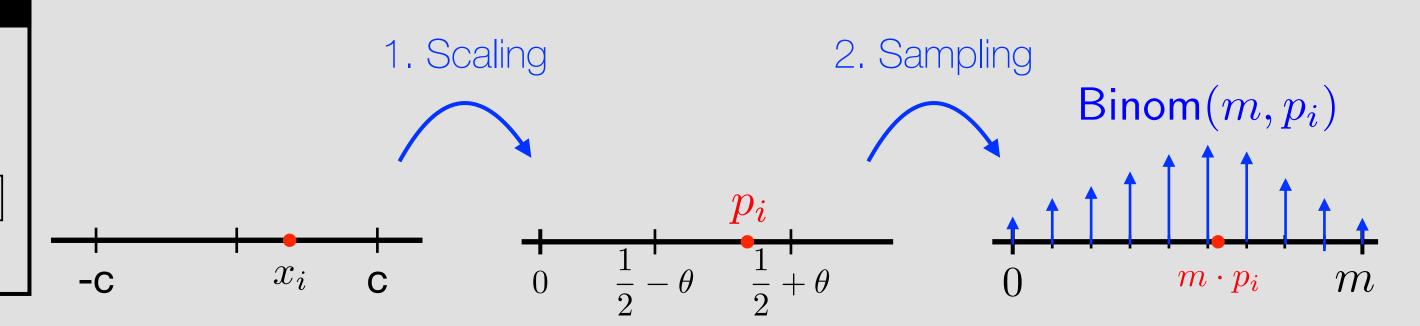


- 1-d mean estimation problem
 - Client i holds $x_i \in [-c, c]$
 - Server estimates $\mu = \frac{1}{n} \sum_{i} x_{i}$

Algorithm (scalar PBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \mathsf{Binom}(m, p_i)$

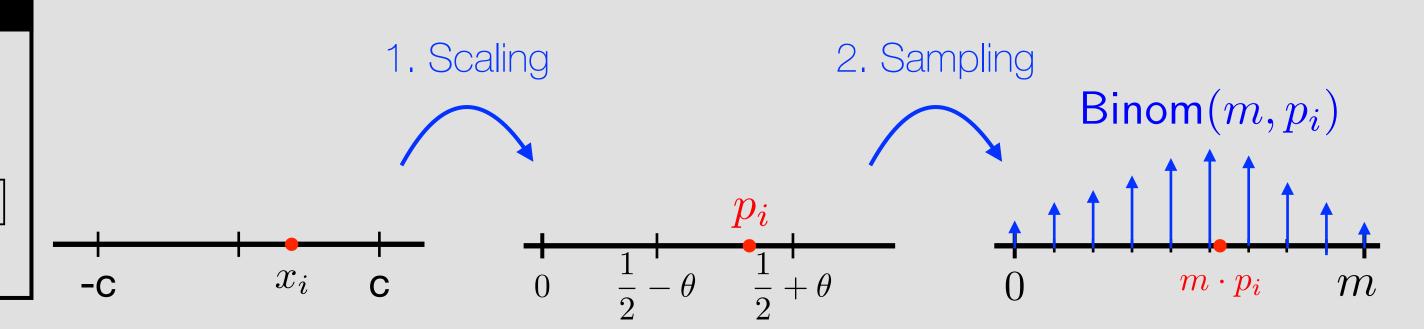


- 1-d mean estimation problem
 - Client i holds $x_i \in [-c, c]$
 - Server estimates $\mu = \frac{1}{n} \sum_{i} x_{i}$
- $\hat{x}_i := c(Y_i m/2)/m\theta$ yields an unbiased estimator on x_i

Algorithm (scalar PBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \mathsf{Binom}(m, p_i)$

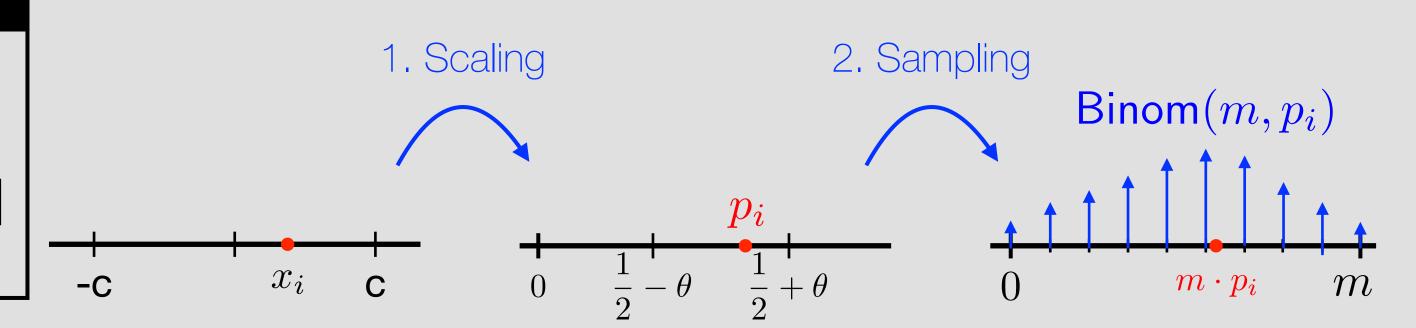


- 1-d mean estimation problem
 - Client i holds $x_i \in [-c, c]$
 - Server estimates $\mu = \frac{1}{n} \sum_{i} x_i$
- $\hat{x}_i := c(Y_i m/2)/m\theta$ yields an unbiased estimator on x_i
- Y_i at most m, so m dictates the communication cost

Algorithm (scalar PBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \mathsf{Binom}(m, p_i)$



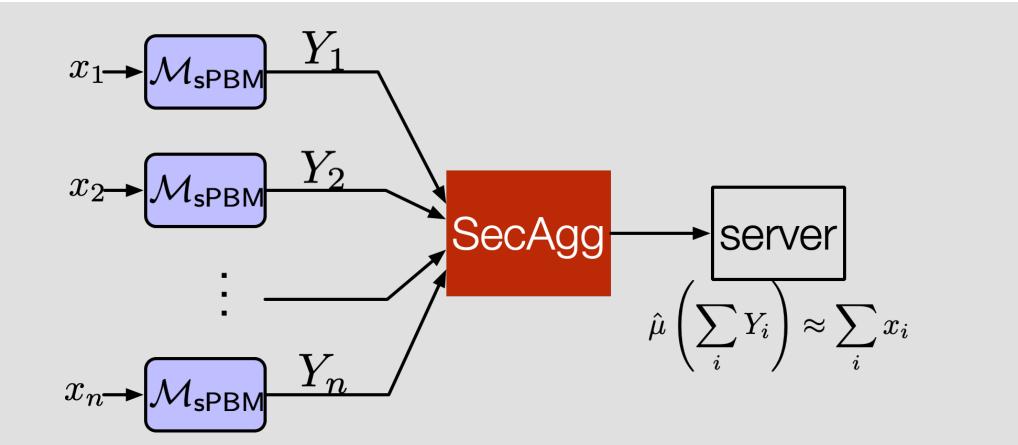
- 1-d mean estimation problem
 - Client i holds $x_i \in [-c, c]$
 - Server estimates $\mu = \frac{1}{n} \sum_{i} x_{i}$
- $\hat{x}_i := c(Y_i m/2)/m\theta$ yields an unbiased estimator on x_i
- Y_i at most m, so m dictates the communication cost
- Higher privacy \rightarrow decreasing m and θ

Mean Estimation with sPBM and SecAgg

Algorithm (sPBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \text{Binom}(m, p_i)$



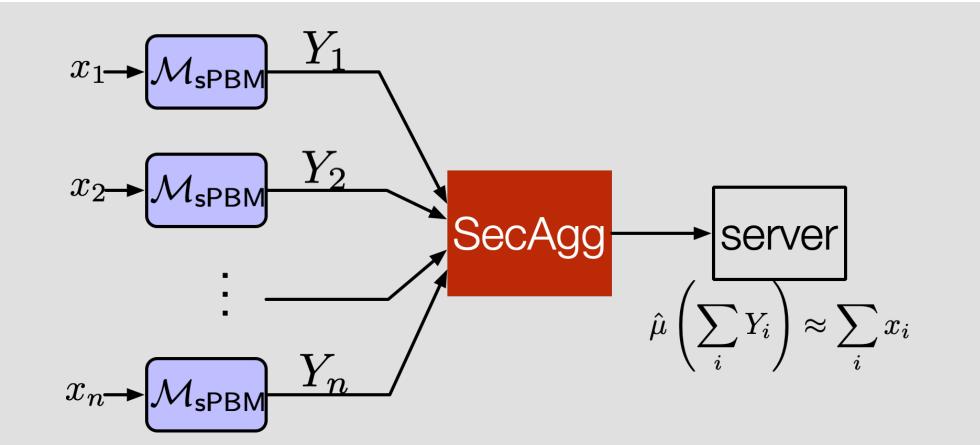
- 1-d mean estimation problem
 - Client i holds $x_i \in [-c, c]$
 - Server estimates $\mu = \frac{1}{n} \sum_{i} x_{i}$

Mean Estimation with sPBM and SecAgg

Algorithm (sPBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \mathsf{Binom}(m, p_i)$



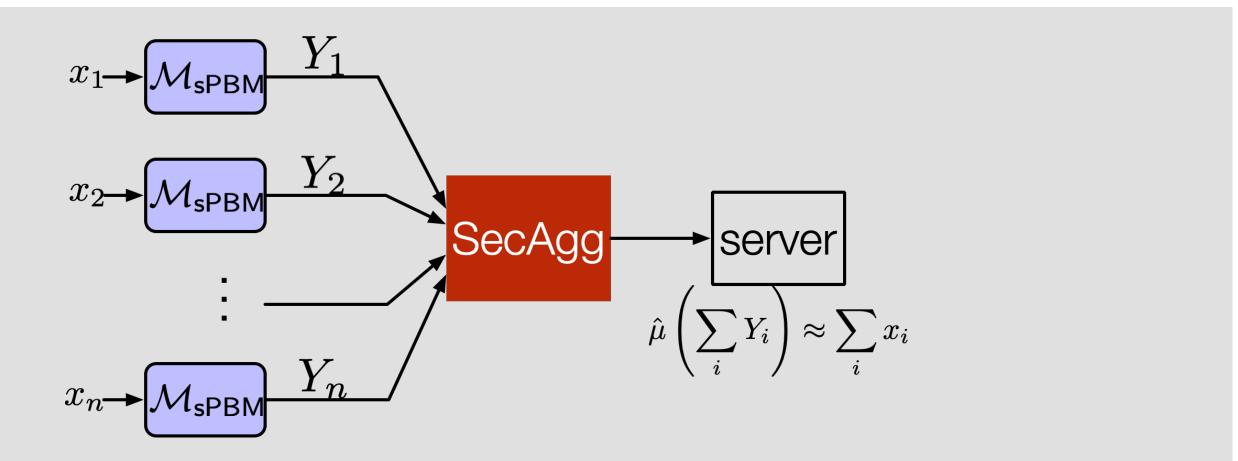
- 1-d mean estimation problem
 - Client i holds $x_i \in [-c, c]$
 - Server estimates $\mu = \frac{1}{n} \sum_{i} x_i$
- Performance guarantees
 - $\hat{\mu} \triangleq \frac{c}{m\theta} \left(\sum_i Y_i m/2 \right) \text{ is an unbiased estimator with}$ $\mathsf{MSE}(\hat{\mu}) \leq \frac{c^2}{4nm\theta^2}$
 - Per-client communication: log(m+1)+log(n) bits
 - ▶ Satisfies $\varepsilon(\alpha)$ -DP for $\varepsilon(\alpha) \ge \Omega\left(\alpha m\theta^2/n\right)$

Mean Estimation with sPBM and SecAgg

Algorithm (sPBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \mathsf{Binom}(m, p_i)$



- 1-d mean estimation problem
 - Client i holds $x_i \in [-c, c]$
 - Server estimates $\mu = \frac{1}{n} \sum_{i} x_{i}$
- Performance guarantees
 - $\hat{\mu} \triangleq \frac{c}{m\theta} \left(\sum_i Y_i m/2 \right) \text{ is an unbiased estimator with }$ $\mathsf{MSE}(\hat{\mu}) \leq \frac{c^2}{4nm\theta^2}$
 - Per-client communication: log(m+1)+log(n) bits
 - ▶ Satisfies $\varepsilon(\alpha)$ -DP for $\varepsilon(\alpha) \ge \Omega\left(\alpha m\theta^2/n\right)$

- Key properties of sPBM
 - linear, so compatible with SecAgg
 - (m, θ) jointly characterizes the three-way trade-off of privacy, communication, and accuracy.
 - Communication (dictated by m) decreases with ε

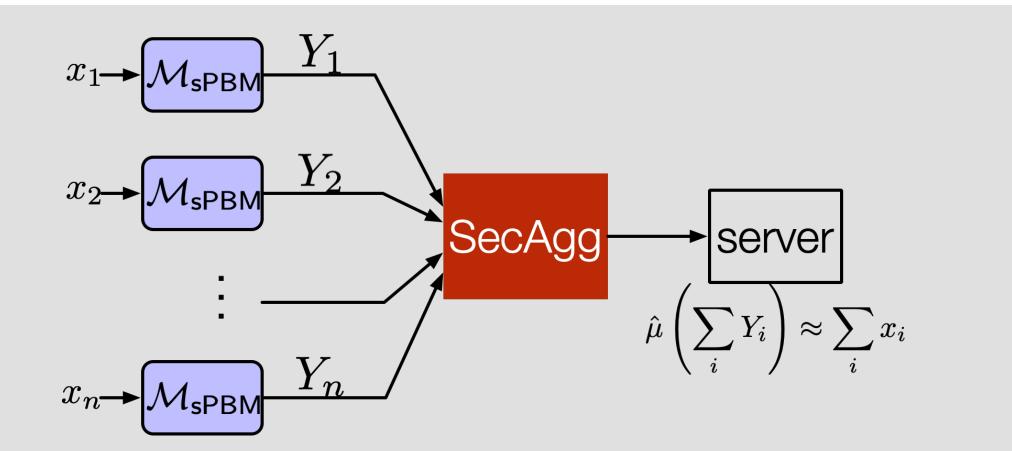
Privacy of sPBM

Algorithm (sPBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

For client *i*:

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \mathsf{Binom}(m, p_i)$



Privacy of sPBM

$$\varepsilon(\alpha) = \max_{p_1', p_1, \dots, p_n} \mathsf{D}_{\alpha} \left(\sum_{i \in [n]} \mathsf{Binom}(m, p_i) \middle\| \mathsf{Binom}(m, p_i) + \sum_{i \in [2:n]} \mathsf{Binom}(m, p_i) \right)$$

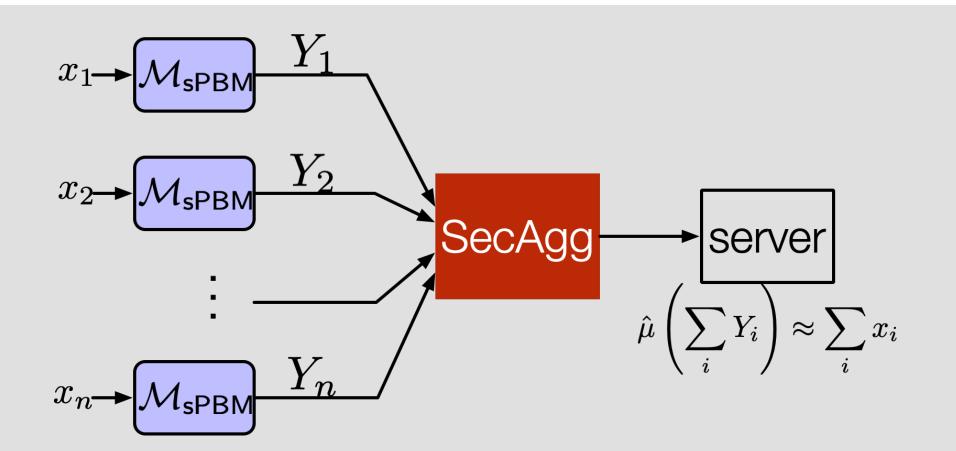
Privacy of sPBM

Algorithm (sPBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

For client i:

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \mathsf{Binom}(m, p_i)$



Privacy of sPBM

$$\varepsilon(\alpha) = \max_{p_1', p_1, \dots, p_n} \mathsf{D}_{\alpha} \left(\sum_{i \in [n]} \mathsf{Binom}(m, p_i) \middle\| \mathsf{Binom}(m, p_i) + \sum_{i \in [2:n]} \mathsf{Binom}(m, p_i) \right)$$

- 1. By the (quasi) convexity of divergence, maximum occurs when $p_i \in \left\{ \frac{1}{2} \theta, \frac{1}{2} + \theta \right\}$
- 2. Decompose the sum via data-processing inequalities
- 3. Bound the divergence with the sub-Gaussian norm of the likelihood ratio.

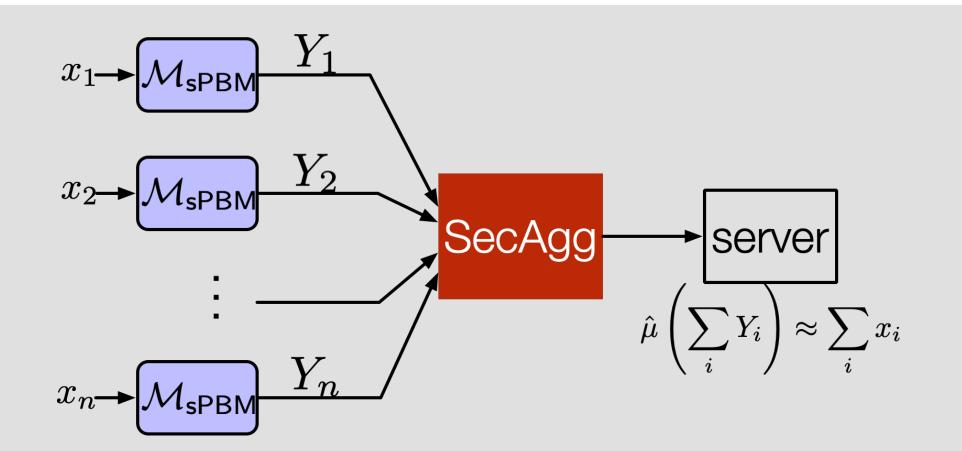
Privacy of sPBM

Algorithm (sPBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

For client i:

- 1. Re-scale x_i to $p_i \in [\frac{1}{2} \theta, \frac{1}{2} + \theta]$
- 2. Draw $Y_i \sim \mathsf{Binom}(m, p_i)$



Privacy of sPBM

$$\varepsilon(\alpha) = \max_{p_1', p_1, \dots, p_n} \mathsf{D}_{\alpha} \left(\sum_{i \in [n]} \mathsf{Binom}(m, p_i) \middle\| \mathsf{Binom}(m, p_i) + \sum_{i \in [2:n]} \mathsf{Binom}(m, p_i) \right)$$

- 1. By the (quasi) convexity of divergence, maximum occurs when $p_i \in \left\{ \frac{1}{2} \theta, \frac{1}{2} + \theta \right\}$
- 2. Decompose the sum via data-processing inequalities
- 3. Bound the divergence with the sub-Gaussian norm of the likelihood ratio.

$$\varepsilon(\alpha)\text{-DP for }\varepsilon(\alpha)\geq\Omega\left(\alpha m\theta^2/n\right)$$

The Poisson binomial mechanism (PBM)

Algorithm (PBM)

Parameters: $m \in \mathbb{N}$, $\theta \leq 0.1$

Input: $x_1,...,x_n\in\mathbb{R}^d$, ℓ_2 -norm bound c

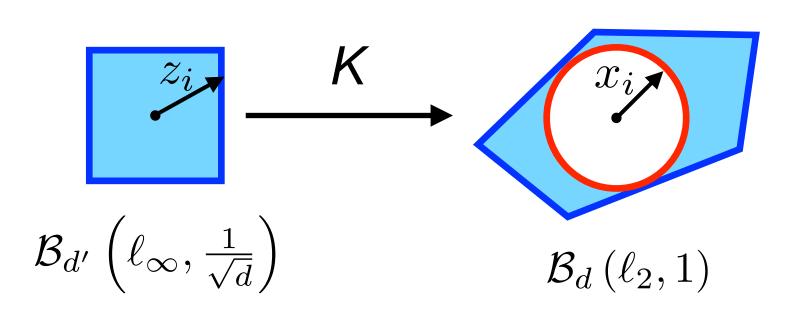
For client i:

- 1. Compute Kashin's representation z_i with $\|z_i\|_{\infty} = \Theta\left(\frac{K}{\sqrt{d}}\right)$
- 2. For each coordinate of z_i , apply sPBM

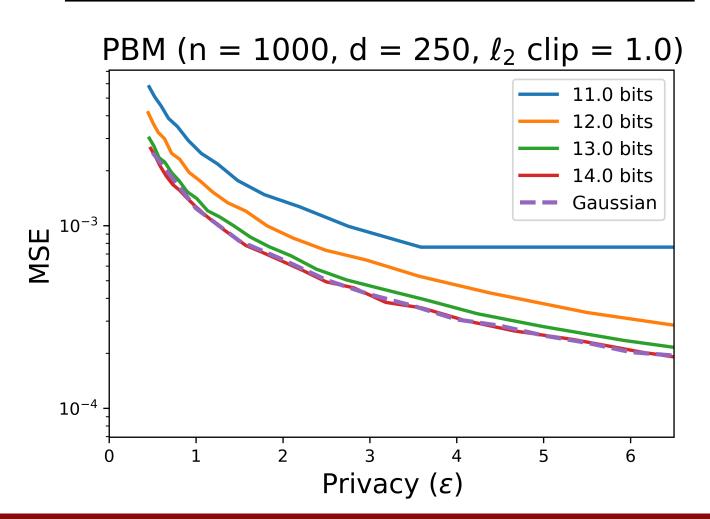
Server estimates $\frac{1}{n} \sum_i z_i$

Server recovers $\frac{1}{n}\sum_{i}x_{i}$ from the (estimated) Kashin's representation

Kashin's representation

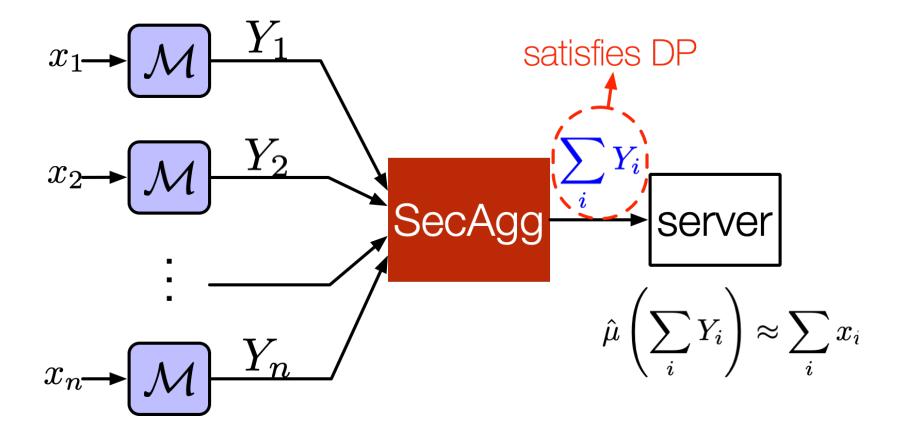


Distributed mean estimation



Compare with Prior Works

Mean estimation with SecAgg and DP



^[1] Suresh Ananda Theertha, et al. "cpSGD: Communication-efficient and differentially-private distributed SGD." NeurIPS 2018.

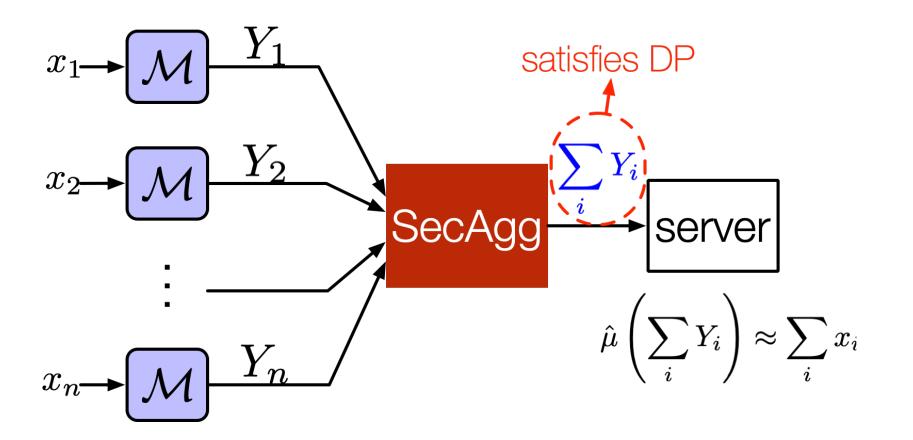
^[2] Peter Kairouz, et al. "The distributed discrete gaussian mechanism for federated learning with secure aggregation." ICML 2021.

^[3] Naman Argawal, et al. "The skellam mechanism for differentially private federated learning." NeurIPS 2021.

^[4] Albert Cheu, et al. "Distributed Differential Privacy via Shuffling." EuroCrypt 2019.

Compare with Prior Works

Mean estimation with SecAgg and DP



	communication	MSE	bias
PBM	$O\left(d\log\left(n\cdot\left\lceil\frac{\varepsilon^2}{d}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	no
Skellam	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
DDG	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
binomial	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d\log d}{n^2\varepsilon^2}\right)$	yes

^[1] Suresh Ananda Theertha, et al. "cpSGD: Communication-efficient and differentially-private distributed SGD." NeurIPS 2018.

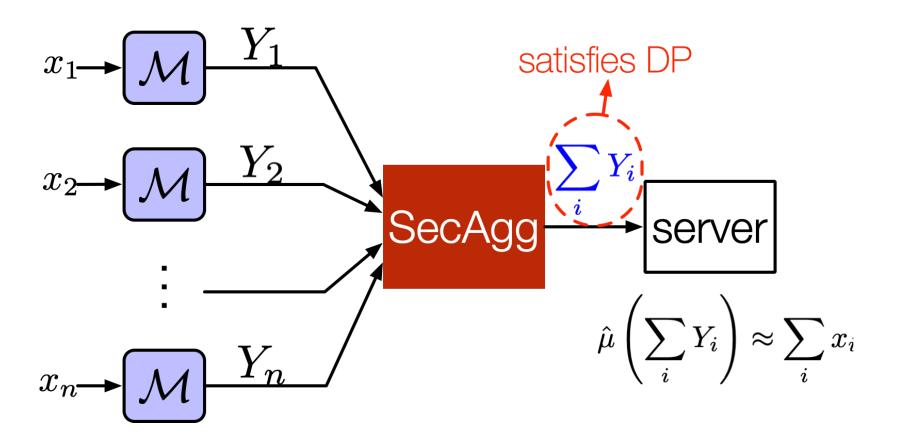
^[2] Peter Kairouz, et al. "The distributed discrete gaussian mechanism for federated learning with secure aggregation." ICML 2021.

^[3] Naman Argawal, et al. "The skellam mechanism for differentially private federated learning." NeurIPS 2021.

^[4] Albert Cheu, et al. "Distributed Differential Privacy via Shuffling." EuroCrypt 2019.

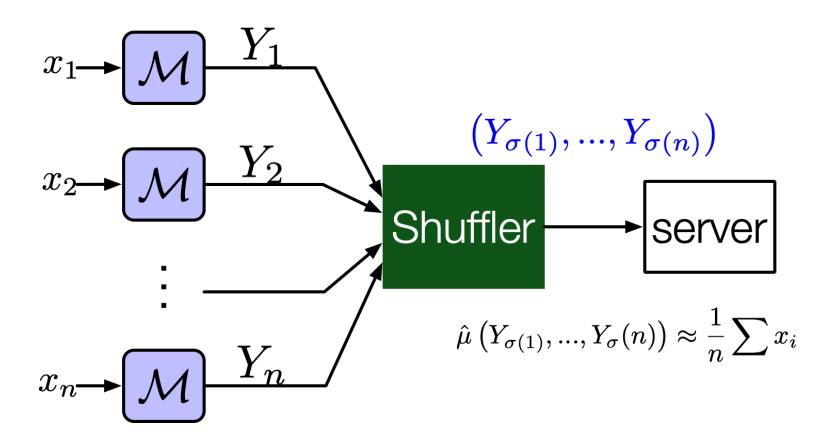
Compare with Prior Works

Mean estimation with SecAgg and DP



_		communication	MSE	bias
S -	PBM	$O\left(d\log\left(n\cdot\left\lceil\frac{\varepsilon^2}{d}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	no
	kellam	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
	DDG	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
- IiC	nomial	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2 d \log d}{n^2 \varepsilon^2}\right)$	yes

Mean estimation with secure shuffling and DP



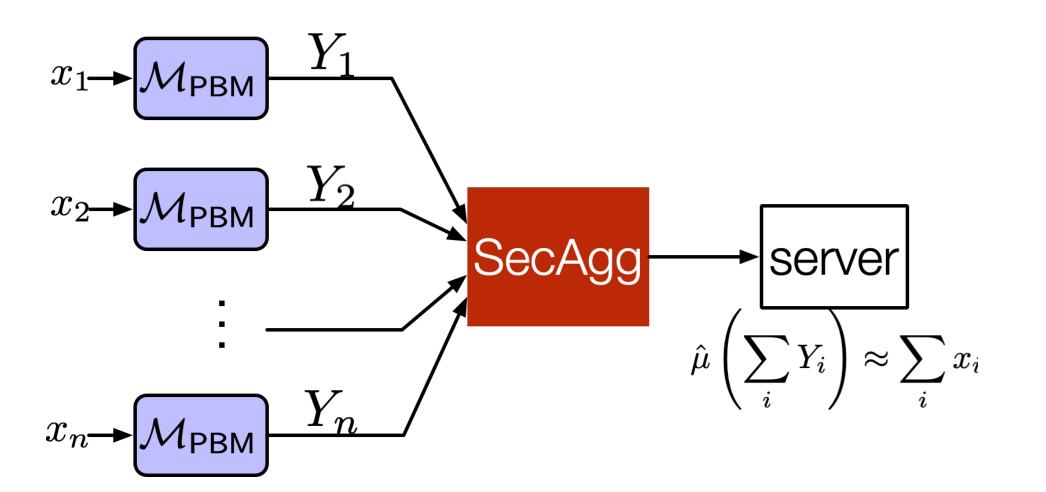
- Compare to [4]: RR with secure shuffling
 - both introduce local binomial noise
 - under different secure models (SecAgg v.s secure shuffler)
 - we provide a Rènyi DP with numerically tight constants
 - extend to multi-dimensional mean estimation for FL

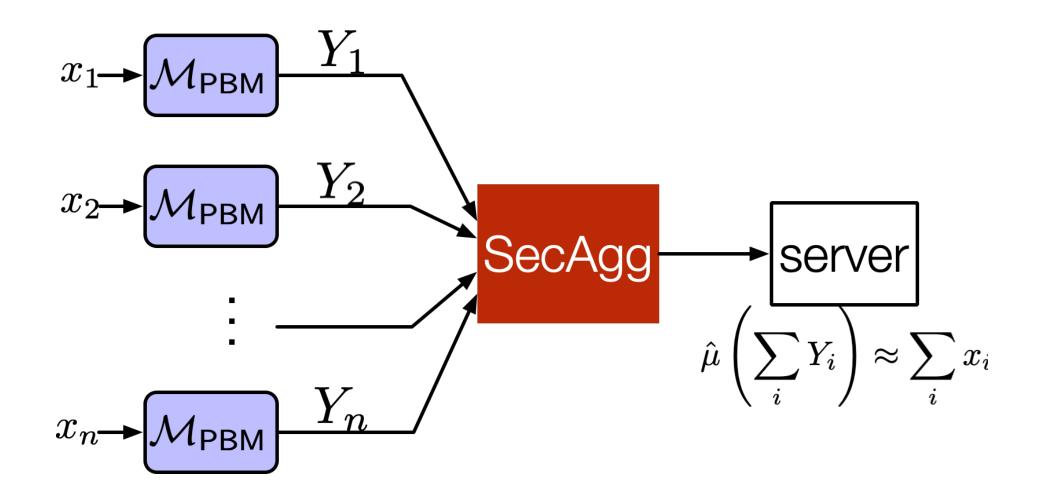
^[1] Suresh Ananda Theertha, et al. "cpSGD: Communication-efficient and differentially-private distributed SGD." NeurIPS 2018.

^[2] Peter Kairouz, et al. "The distributed discrete gaussian mechanism for federated learning with secure aggregation." ICML 2021.

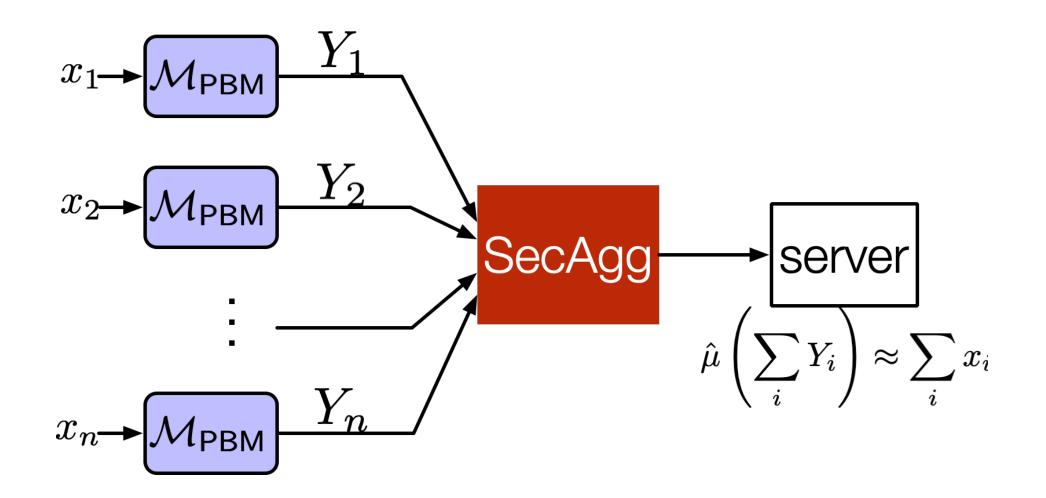
^[3] Naman Argawal, et al. "The skellam mechanism for differentially private federated learning." NeurIPS 2021.

^[4] Albert Cheu, et al. "Distributed Differential Privacy via Shuffling." EuroCrypt 2019.



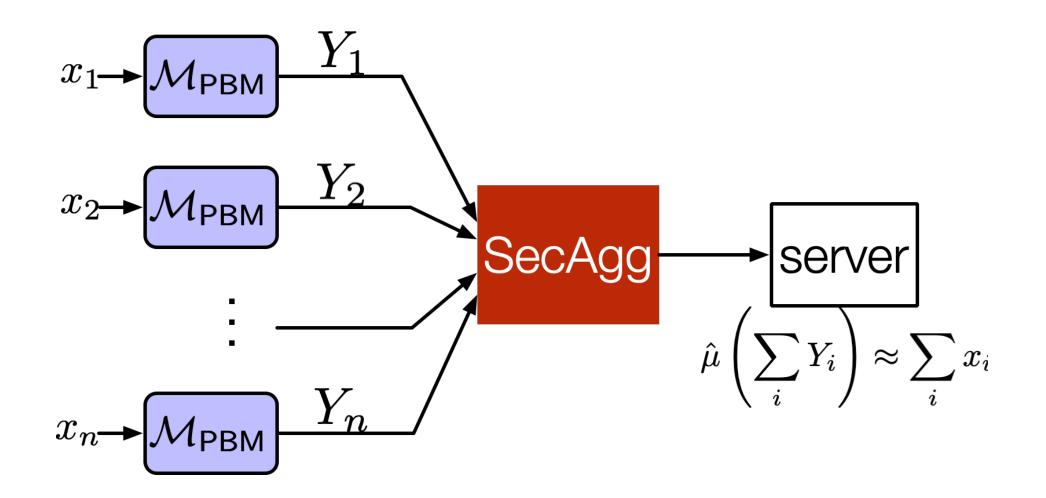


Unbiased mean estimation scheme



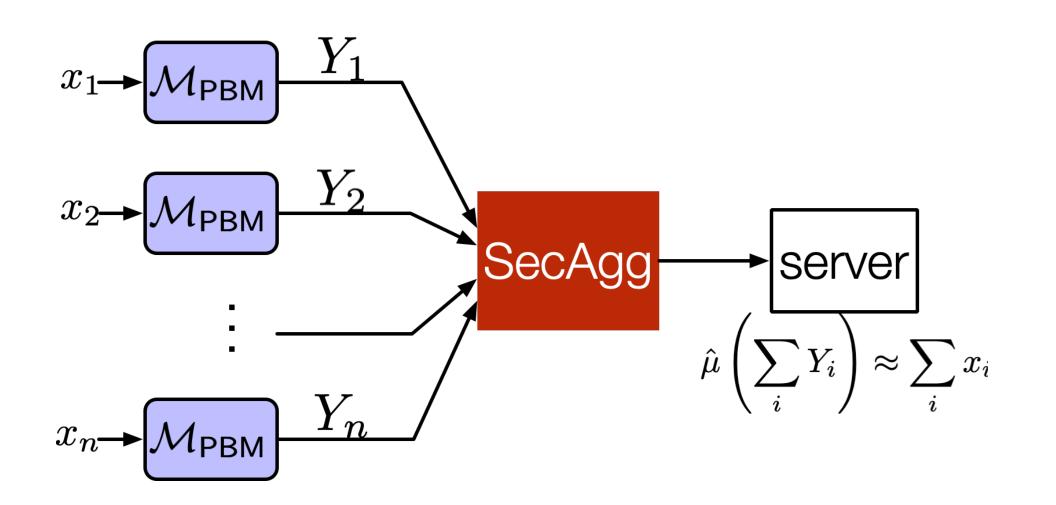
- Unbiased mean estimation scheme
- Communication decreases with arepsilon

	communication	MSE	bias
PBM	$O\left(d\log\left(n\cdot\left\lceil\frac{\varepsilon^2}{d}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	no
Skellam	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
DDG	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
oinomial	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2 d \log d}{n^2 \varepsilon^2}\right)$	yes



- Unbiased mean estimation scheme
- Communication **decreases** with ε
- Order-optimal privacy-utility trade-off

	communication	MSE	bias
PBM	$O\left(d\log\left(n\cdot\left\lceil\frac{\varepsilon^2}{d}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	no
Skellam	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
DDG	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
binomial	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d\log d}{n^2\varepsilon^2}\right)$	yes



- Unbiased mean estimation scheme
- Communication decreases with arepsilon
- Order-optimal privacy-utility trade-off
- Allows for numerically computing the exact privacy loss

	communication	MSE	bias
PBM	$O\left(d\log\left(n\cdot\left\lceil\frac{\varepsilon^2}{d}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	no
Skellam	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
DDG	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d}{n^2\varepsilon^2}\right)$	yes
binomial	$O\left(d\log\left(n\cdot\left\lceil\frac{d}{\varepsilon^2}\right\rceil\right)\right)$	$O_{\delta}\left(\frac{c^2d\log d}{n^2\varepsilon^2}\right)$	yes

