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Quantification and Analysis of Layer-wise and Pixel-wise Information Discarding

> Overview of the task

« Motivation:
We aim to explain how the information of each input variable is gradually discarded

during the forward propagation.

—— Classification

-

Use 40% information of foreground pixels
Use 12% information of background pixels

Use 60% information of foreground pixels
Use 35% information of background pixels

Use 90% information of foreground pixels
Use 85% information of background pixels
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> Overview of the task

 Input: A pre-trained neural network
An input image
« Qutput: Quantification results of layer-wise and pixel-wise information discarding
« How much information of each input pixel is used to compute the feature
« How much input information can be recovered from the feature
« Enabling fair comparability over different layers, or over different DNNSs.
« Our metrics also have theoretical connection with the performance of DNNSs.

—— Classification
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Pixel-wised CID
over different layers
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> Metrics: CID, concentration and RU

« Assumption: Features in a very limited range represent a same object instance.
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CID: The entropy of the RU: The entropy of the
perturbed input. reconstructed input.
Concentration: The relative amount of information discarded in the
background w.r.t. information discarded in the foreground. A high value of the
concentration indicates that the representation is effective.
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> Fair comparability of the proposed metrics

Comparability] Grad-CAM x10* Gradients xlO CAM x10? e Pk Ol
O - conv3-3 conv4-3 conv3-3 conv3-3 conv4-3 conv5-3
L N Magmtude of CID Z o WA -2.6| CID
ayers | Nets 20 WG L) 2.8
- heatmaps X% A n a .
Based on gradient No No | 2 e 3.0
Based on perturbation| No No 15.5‘ § 8 = I8 b
P / Eﬂ o &‘i | 23] €D
Based on CAM No No S 3 , \ -2.9
B2 ,‘ 3
Ours Yes | Yes f 1 # f 1 152 - s d e
. ] ) # ol conv ayer§ ot conv faycrs (b) Vlsuallzatlon of Grad-CAM and CID on dlfferent layers of 0 5 10 15
(al) Comparability of different explanations (a2) Layer-wise changes of attribut/’ 1 maps the VGG-16 trained using the CUB200-2011 dataset # of conv layers
Other methods: CID and RU:
Cannot ensure fair Can ensure fair
comparisons between comparisons between
different layers different layers

CID and RU can be used to fairly compare the representation capacity between
« different DNINSs
o different layers of the same DNN
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>’ Positive correlation between concentration and the DNN’s performance

« \\e theoretically proved the positive correlation between the metric concentration

and the efficiency of information processing (from the perspective of information

bottleneck theory).
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(a) Relationship between the classification accuracy of
DNNs and the concentration (@ different layers
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> Visualization of pixel-wised CID and RU

Visualization of CID

For VGG-16 Convl 2 Conv2 2 Conv3 3 Conv4 3 Conv5 3
For VGG-19 Convl 2 Conv2 2 Conv3 4 Conv4 4 Conv5 4
For AlexNet Convl Conv2 Conv3 Conv4 Conv5
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Visualization of RU

ForVGG-16 Convl 2 Conv2 2 Conv3 3 Conv4 3 Conv5S 3
For VGG-19 Convl 2 Conv2 2 Conv3 4 Conv4 4 Conv5 4
For AlexNet Convl Conv2 Conv3 Conv4 Conv5s
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CID: DNNs discard more information in the

background than information in the foreground.

RU: Information of edges is less
discarded than information of colors.
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> Analysis of different DNNSs

AE! , Concentration
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(a) Image classification @ CIFAR-10 (b) Image reconstruction @ CIFAR-10 (c) Image classification @ CUB200-2011
Visualization of CID Visualization of RU
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« A deep DNN usually had higher CID and RU values than a shallow DNN. Thus, a deep
DNN usually discards more input information than a shallow DNN.

« High layers can be more concentrated on the foreground than low layers.
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> Analysis of existed deep learning techniques
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(a) Diagnosis of network compression ' of DNNs learned with and without distillation

* Network compression made the DNN less powerful to remove the information
of redundant pixels, but it still maintained the representation power of the DNN.

« Knowledge distillation helped the DNN to preserve more information.
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Comparisons with previous methods

0.6/ = CID  Guided-BP
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» We evaluated our metric CID using = The metric CID outperformed CAM,

the descriptive accuracy [1], and Grad-CAM and LRP in the weakly-
found that CID outperformed other supervised localization task.
methods.

[1] Warnecke, A., Arp, D., Wressnegger, C., and Rieck, K. Evaluating explanation methods for deep learning in security.
European Symposium on Security and Privacy, 2020.
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> Contributions

* We proposed metrics CID, concentration, and RU, to measure the
discarding of input information during the forward propagation.

* Our metrics enabled fair comparisons of the representation capacity
over different layers and different DNNs.

* |n particular, we proved that the metric concentration can reflect the
efficiency of information processing.

e Based on the proposed metrics, we analyzed classic DNNs and existed
deep learning techniques, such as the network compression and the
knowledge distillation.
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