

Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete Sequential Data via Bayesian Optimization

Deokjae Lee, Seungyong Moon, Junhyeok Lee, Hyun Oh Song

Department of Computer Science and Engineering
Seoul National University, Seoul, Korea

ICML 2022

Example: word-level adversarial attacks on text data

- ▶ Make an adversarial perturbation imperceptible to human.

A Strong Baseline for Query Efficient Attacks in a Black Box Setting, Maheshwary et al., EMNLP 2021.

TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP, Morris et al., EMNLP 2020.

Example: word-level adversarial attacks on text data

- ▶ Make an adversarial perturbation imperceptible to human.
- ▶ Word-level attack (BBA, PWWS, TextFooler, LSH, PSO, BAE, ...)

A Strong Baseline for Query Efficient Attacks in a Black Box Setting, Maheshwary et al., EMNLP 2021.

TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP, Morris et al., EMNLP 2020.

Example: word-level adversarial attacks on text data

- ▶ Make an adversarial perturbation imperceptible to human.
- ▶ Word-level attack (BBA, PWWS, TextFooler, LSH, PSO, BAE, . . .)
 - Replace some words of the input text to their synonyms to fool the target model.

A Strong Baseline for Query Efficient Attacks in a Black Box Setting, Maheshwary et al., EMNLP 2021.

TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP, Morris et al., EMNLP 2020.

Example: word-level adversarial attacks on text data

- ▶ Make an adversarial perturbation imperceptible to human.
- ▶ Word-level attack (BBA, PWWS, TextFooler, LSH, PSO, BAE, ...)
 - Replace some words of the input text to their synonyms to fool the target model.

s_{orig} = Food is **fantastic** and exceptionally **clean!** My only complaint is I went there with my 2 small children and they were showing a very inappropriate R rated movie! (LABEL: **Pos**)

↓ BBA

s_{adv} = Food is **gorgeous** and exceptionally **unpolluted!** My only complaint is I went there with my 2 small children and they were showing a very inappropriate R rated movie! (LABEL: **Neg**)

Problem formulation

- ▶ Conditions for imperceptible perturbation (convention):
 - **Semantically similar** to the original sequence.
 - The **perturbation size** should be sufficiently **small**.

Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency, Ren et al., ACL 2019.

Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment, Jin et al., AAAI 2020.

Problem formulation

- ▶ Conditions for imperceptible perturbation (convention):
 - **Semantically similar** to the original sequence.
 - The **perturbation size** should be sufficiently **small**.
- ▶ For the original sequence $s = [w_0, \dots, w_{l-1}]$, define a set of semantically similar candidates $\mathcal{C}(w_i)$ for each i -th element w_i and define the attack search space $\prod_{i=0}^{l-1} \mathcal{C}(w_i)$.

Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency, Ren et al., ACL 2019.

Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment, Jin et al., AAAI 2020.

Problem formulation

- ▶ Conditions for imperceptible perturbation (convention):
 - **Semantically similar** to the original sequence.
 - The **perturbation size** should be sufficiently **small**.
- ▶ For the original sequence $s = [w_0, \dots, w_{l-1}]$, define a set of semantically similar candidates $\mathcal{C}(w_i)$ for each i -th element w_i and define the attack search space $\prod_{i=0}^{l-1} \mathcal{C}(w_i)$.
- ▶ Example (**word substitution based on word embedding**):
For $s = \text{"Food is fantastic and exceptionally clean! ..."}$,

Problem formulation

- ▶ Conditions for imperceptible perturbation (convention):
 - **Semantically similar** to the original sequence.
 - The **perturbation size** should be sufficiently **small**.
- ▶ For the original sequence $s = [w_0, \dots, w_{l-1}]$, define a set of semantically similar candidates $\mathcal{C}(w_i)$ for each i -th element w_i and define the attack search space $\prod_{i=0}^{l-1} \mathcal{C}(w_i)$.
- ▶ Example (**word substitution based on word embedding**):
For $s = \text{"Food is fantastic and exceptionally clean! ..."}$,

w_i	food	is	fantastic	and	exceptionally	clean	...
$\mathcal{C}(w_i)$	food	is	fantastic	and	exceptionally	clean	...
	diet		wonderful		uncommonly	disinfect	...
	meal		gorgeous		extraordinarily	unpolluted	...
	:		:		:	:	...

Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency, Ren et al., ACL 2019.

Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment, Jin et al., AAAI 2020.

Problem formulation

- ▶ Objective: find adversarial example $s' \in \prod_{i=0}^{l-1} \mathcal{C}(w_i)$ that minimizes the modification rate (MR), $d_H(s, s')/l$ where d_H is Hamming distance.

Problem formulation

- ▶ Objective: find adversarial example $s' \in \prod_{i=0}^{l-1} \mathcal{C}(w_i)$ that minimizes the modification rate (MR), $d_H(s, s')/l$ where d_H is Hamming distance.
- ▶ Formally, we solve

$$\begin{aligned} & \underset{s' \in \prod_{i=0}^{l-1} \mathcal{C}(w_i)}{\text{minimize}} && d_H(s, s') \\ & \text{subject to} && \mathcal{L}(f_\theta(s'), y) \geq 0, \end{aligned}$$

where $\mathcal{L}(f_\theta(s), y) \triangleq \max_{y' \in \mathcal{Y}, y' \neq y} f_\theta(s)_{y'} - f_\theta(s)_y$ is the attack criterion.

Problem formulation

- ▶ Objective: find adversarial example $s' \in \prod_{i=0}^{l-1} \mathcal{C}(w_i)$ that minimizes the modification rate (MR), $d_H(s, s')/l$ where d_H is Hamming distance.
- ▶ Formally, we solve

$$\begin{aligned} & \underset{s' \in \prod_{i=0}^{l-1} \mathcal{C}(w_i)}{\text{minimize}} && d_H(s, s') \\ & \text{subject to} && \mathcal{L}(f_\theta(s'), y) \geq 0, \end{aligned}$$

where $\mathcal{L}(f_\theta(s), y) \triangleq \max_{y' \in \mathcal{Y}, y' \neq y} f_\theta(s)_{y'} - f_\theta(s)_y$ is the attack criterion.

- ▶ We focus on the **black-box setting** where the adversary can **only observe the predicted class probabilities** on inputs with a **limited number of queries** to the network.

Existing methods and limitations

- ▶ **Greedy-based algorithms** (PWWS, TextFooler, LSH, BAE, . . .):
 - (1) Define the word replacement order based on word importance and
 - (2) greedily replace each word under this order with its synonym until attack success.
 - Severely restricted search space of the size $\sum_{i=0}^{l-1} |C(w_i)| - l + 1$.
 - Require small Qrs, but achieve low attack success rate (ASR).

Existing methods and limitations

- ▶ **Greedy-based algorithms** (PWWS, TextFooler, LSH, BAE, . . .):
 - (1) Define the word replacement order based on word importance and
 - (2) greedily replace each word under this order with its synonym until attack success.
 - Severely restricted search space of the size $\sum_{i=0}^{l-1} |C(w_i)| - l + 1$.
 - Require small Qrs, but achieve low attack success rate (ASR).
- ▶ **Evolutionary algorithms** (GA, PSO):
 - Genetic algorithm (GA), Particle swarm optimization (PSO)
 - Larger search space of the size $\prod_{i=0}^{l-1} |C(w_i)|$.
 - Achieve high ASR, but require large Qrs.

Our method: Blockwise Bayesian Attack (BBA)

- ▶ Goal: Achieve high ASR using small Qrs.
- ▶ Solution: Utilize *Bayesian Optimization* (BO)!
- ▶ **Blockwise Bayesian Attack framework:**
 - Larger search space of size $\prod_{i=0}^{l-1} |C(w_i)|$ which is equal to Evolutionary algorithms.
 - Achieve high ASR, and require small Qrs.

Method	ASR (%)	Qrs
Greedy-based algorithm (LSH)	93.9	533
Evolutionary algorithm (PSO)	98.8	86611
<i>Blockwise Bayesian Attack</i> (BBA)	98.8	283

Table: Attack results against BERT model fine-tuned on Yelp dataset.

Blockwise Bayesian Attack (BBA) framework

BBA divides the optimization problem into two steps.

Blockwise Bayesian Attack (BBA) framework

BBA divides the optimization problem into two steps.

- ▶ **Finding adv sequence.** First, BBA conducts BO to maximize the black-box function $\mathcal{L}(f_\theta(\cdot), y)$ until finding an adversarial sequence s_{adv} .

Blockwise Bayesian Attack (BBA) framework

BBA divides the optimization problem into two steps.

- ▶ **Finding adv sequence.** First, BBA conducts BO to maximize the black-box function $\mathcal{L}(f_\theta(\cdot), y)$ until finding an adversarial sequence s_{adv} .
- ▶ **Post-optimization.** Second, BBA reduces the modification rate of the perturbed sequence from the original input while maintaining feasibility.

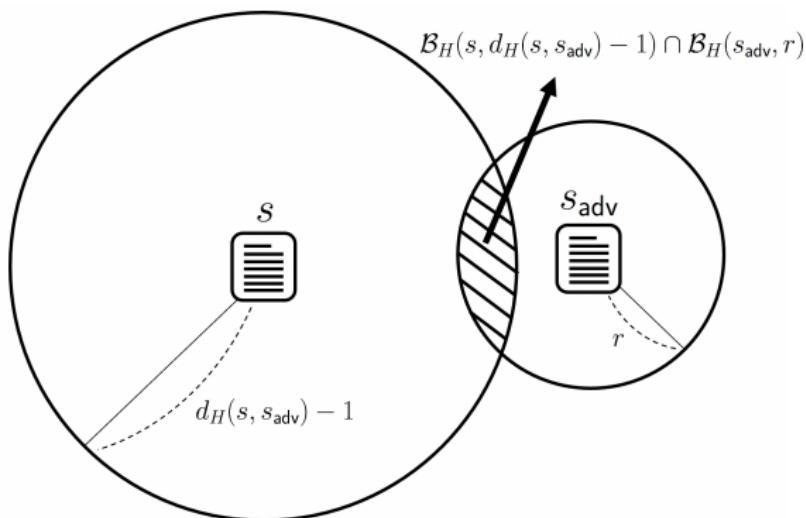
Problems in BO and BBA's solutions

- ▶ Scalability issues!

Problems in BO and BBA's solutions

- ▶ Scalability issues!
- ▶ **High query complexity.** Qrs required to obtain good coverage of the input space, increases exponentially w.r.t. the input dimensions due to the curse of dimensionality.
- ▶ **High computational complexity.** The GP parameter fitting has computational complexity of $\mathcal{O}(n^3)$, where n is the number of evaluations so far.

Problems in BO and BBA's solutions


- ▶ Scalability issues!
- ▶ **High query complexity.** Qrs required to obtain good coverage of the input space, increases exponentially w.r.t. the input dimensions due to the curse of dimensionality.
- ▶ Solution - **Block Decomposition:** divide the sequence into blocks and optimize blockwise!
- ▶ **High computational complexity.** The GP parameter fitting has computational complexity of $\mathcal{O}(n^3)$, where n is the number of evaluations so far.
- ▶ Solution - **History subsampling:** use a subset of the evaluation history!

Post-optimization process

- ▶ Objective: Find an adversarial sequence with a smaller MR.

Post-optimization process

- ▶ Objective: Find an adversarial sequence with a smaller MR.
- ▶ Repeatedly conduct BO on $\overbrace{\mathcal{B}_H(s, d_H(s, s_{\text{adv}}) - 1)}^{\text{establish smaller MR}} \cap \overbrace{\mathcal{B}_H(s_{\text{adv}}, r)}^{\text{optimize near } s_{\text{adv}}}$ to find a new s_{adv} with a smaller MR.

Quantitative results

Table: Attack results on sentence-level classification datasets.

(a) WordNet

Dataset	Model	Method	ASR (%)	MR (%)	Qrs
AG	BERT-base	PWWS	57.1	18.3	367
		BBA	77.4	17.8	217
LSTM		PWWS	78.3	16.4	336
		BBA	83.2	15.4	190
MR	XLNet-base	PWWS	83.9	14.4	143
		BBA	87.8	14.4	77
BERT-base		PWWS	82.0	15.0	143
		BBA	88.3	14.6	94
LSTM		PWWS	94.2	13.3	132
		BBA	94.2	13.0	67

(b) Embedding

Dataset	Model	Method	ASR (%)	MR (%)	Qrs
AG	BERT-base	TF	84.7	24.9	346
		BBA	96.0	18.9	154
LSTM		TF	94.9	17.3	228
		BBA	98.5	16.6	142
MR	XLNet-base	TF	95.0	18.0	101
		BBA	96.3	16.2	68
BERT-base		TF	89.2	20.0	115
		BBA	95.7	16.9	67
LSTM		TF	98.2	13.6	72
		BBA	98.2	13.1	54

(c) HowNet

Dataset	Model	Method	ASR (%)	MR (%)	Qrs
AG	BERT-base	PSO	67.2	21.2	65860
		BBA	70.8	15.5	5176
LSTM		PSO	71.0	19.7	44956
		BBA	71.9	13.7	3278
MR	XLNet-base	PSO	91.3	18.6	4504
		BBA	91.3	11.7	321
BERT-base		PSO	90.9	17.3	6299
		BBA	90.9	12.4	403
LSTM		PSO	94.4	15.3	2030
		BBA	94.4	11.2	138

Quantitative results

Table: Attack results on sentence-level classification datasets.

(a) WordNet

Dataset	Model	Method	ASR (%)	MR (%)	Qrs
AG	BERT-base	PWWS	57.1	18.3	367
		BBA	77.4	17.8	217
MR	XLNet-base	PWWS	78.3	16.4	336
		BBA	83.2	15.4	190
MR	BERT-base	PWWS	83.9	14.4	143
		BBA	87.8	14.4	77
LSTM	PWWS	PWWS	82.0	15.0	143
		BBA	88.3	14.6	94
LSTM	BBA	PWWS	94.2	13.3	132
		BBA	94.2	13.0	67

(b) Embedding

Dataset	Model	Method	ASR (%)	MR (%)	Qrs
AG	BERT-base	TF	84.7	24.9	346
		BBA	96.0	18.9	154
MR	XLNet-base	TF	94.9	17.3	228
		BBA	98.5	16.6	142
MR	BERT-base	TF	95.0	18.0	101
		BBA	96.3	16.2	68
LSTM	BERT-base	TF	89.2	20.0	115
		BBA	95.7	16.9	67
LSTM	BBA	TF	98.2	13.6	72
		BBA	98.2	13.1	54

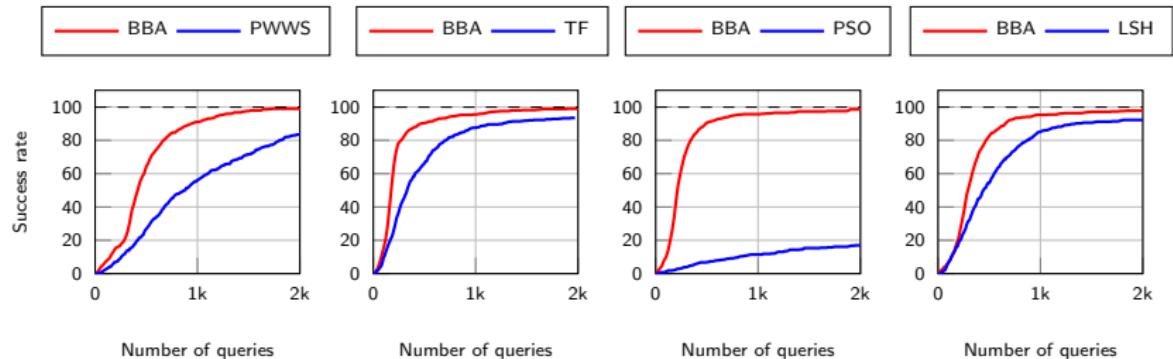
(c) HowNet

Dataset	Model	Method	ASR (%)	MR (%)	Qrs
AG	BERT-base	PSO	67.2	21.2	65860
		BBA	70.8	15.5	5176
LSTM	BERT-base	PSO	71.0	19.7	44956
		BBA	71.9	13.7	3278
MR	XLNet-base	PSO	91.3	18.6	4504
		BBA	91.3	11.7	321
LSTM	BERT-base	PSO	90.9	17.3	6299
		BBA	90.9	12.4	403
LSTM	BBA	PSO	94.4	15.3	2030
		BBA	94.4	11.2	138

Table: Attack results on document-level classification datasets against BERT.

(a) WordNet

Dataset	Method	ASR (%)	MR (%)	Qrs
IMDB	PWWS	97.6	4.5	1672
	BBA	99.6	4.1	449
Yelp	LSH	96.3	5.3	557
	BBA	98.9	4.8	372
Yelp	PWWS	94.3	7.6	1036
	BBA	99.2	7.4	486
Yelp	LSH	92.6	9.5	389
	BBA	98.8	8.8	271


(b) Embedding

Dataset	Model	Method	ASR (%)	MR (%)	Qrs
IMDB	BERT-base	TF	99.1	8.6	712
		BBA	99.6	6.1	339
Yelp	BERT-base	TF	93.5	11.1	461
		BBA	99.8	9.6	319
Yelp	BERT-base	TF	94.7	8.9	550
		BBA	99.8	8.6	403

(c) HowNet

Dataset	Model	Method	ASR (%)	MR (%)	Qrs
IMDB	BERT-base	PSO	100.0	3.8	113343
		BBA	100.0	3.3	352
Yelp	BERT-base	PSO	98.8	10.6	86611
		BBA	98.8	8.2	283
Yelp	BERT-base	PSO	93.9	8.0	533
		BBA	98.2	7.4	353

Quantitative results

Figure: The cumulative distribution of the number of queries required for the attack methods against BERT-base on Yelp.

Protein classification task

Symbol	Amino acid
A	Alanine
R	Arginine
N	Asparagine
D	Aspartic acid
C	Cysteine
Q	Glutamine
E	Glutamic acid
G	Glycine
H	Histidine
I	Isoleucine
L	Leucine
K	Lysine
M	Methionine
F	Phenylalanine
P	Proline
O	Pyrolysine
S	Serine
U	Selenocysteine
T	Threonine
W	Tryptophan
Y	Tyrosine
V	Valine
B	Aspartic acid or Asparagine
Z	Glutamic acid or Glutamine
X	Any amino acid
...bos...	Beginning of a sentence (BOS) token
...mask...	Mask token
...pad...	Pad token

- ▶ A protein is a sequence of amino acids, each of which is a discrete categorical variable.

Example: LASQVVTLVKCLEDVVPEEWLLLHV...

Table: The description of the 28 symbols used in EC50 dataset.

Protein classification task

Symbol	Amino acid
A	Alanine
R	Arginine
N	Asparagine
D	Aspartic acid
C	Cysteine
Q	Glutamine
E	Glutamic acid
G	Glycine
H	Histidine
I	Isoleucine
L	Leucine
K	Lysine
M	Methionine
F	Phenylalanine
P	Proline
O	Pyrolysine
S	Serine
U	Selenocysteine
T	Threonine
W	Tryptophan
Y	Tyrosine
V	Valine
B	Aspartic acid or Asparagine
Z	Glutamic acid or Glutamine
X	Any amino acid
„bos„	Beginning of a sentence (BOS) token
„mask„	Mask token
„pad„	Pad token

Table: The description of the 28 symbols used in EC50 dataset.

- ▶ A protein is a sequence of amino acids, each of which is a discrete categorical variable.

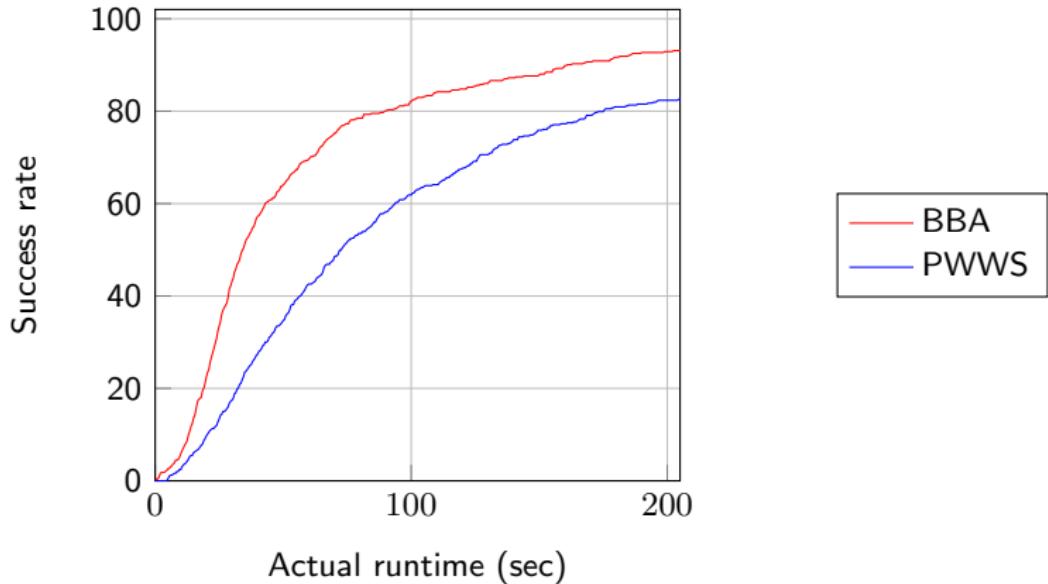
Example: LASQVVTLVKCLEDVVPEEWLLLHV...

- ▶ Dataset: EC50, an enzyme classification dataset (EC) with 3-level hierarchical multi-labels.

- enzyme vs. non-enzyme (level 0, 2 classes)
- main enzyme class (level 1, 6 classes)
- enzyme subclass (level 2, 65 classes)

Quantitative results on the protein domain

Table: Attack results against AWD-LSTM models on the protein classification dataset EC50 level 0, 1, and 2.


Method	Level 0			Level 1			Level 2		
	ASR	MR	Qrs	ASR	MR	Qrs	ASR	MR	Qrs
TF	83.8	3.2	619	85.8	3.0	584	89.6	2.5	538
BBA	99.8	2.9	285	99.8	2.3	293	100.0	2.0	231

Qualitative results

Table: Examples of the original and their adversarial sequences against BERT-base on MR, Yelp, and EC50.

Sentence-Level Text Classification (Movie Review)		Label
Orig	suffers from a decided lack of creative storytelling.	Negative
Ours	<i>undergo</i> from a decided <i>dearth</i> of creative storytelling.	Positive
TF	-	Fail
Document-Level Text Classification (Yelp)		Label
Orig	Food is fantastic and exceptionally clean! My only complaint is I went there with my 2 small children and they were showing a very inappropriate R rated movie!	Positive
Ours	Food is <i>gorgeous</i> and exceptionally <i>unpolluted</i> ! My only complaint is I went there with my 2 small children and they were showing a very inappropriate R rated movie!	Negative
TF	Food is fantastic and <i>awfully</i> clean! My only <i>grievances</i> is I <i>turned</i> there with my 2 small children and they were showing a very inappropriate R rated <i>footage</i> !	Negative
Protein Classification (EC50 level 0)		Label
Orig	MATPWRALLMILASQVVTLVKCLEDDDVPEEWLLLHVVQGQIGAGNNSYLRNLNHEGKIIILRMQSLRGDADLYVSDSTPHPSFDDYELQSVT CGQDVVSIPAHFQRPVGIGIYGHPSHESDFEMRVYYDRTVDQYPFGEAAYFTDPTGASQQAYAPEEEAAQEEESVLWTILISILKLVLEILF	Non-Enzyme
Ours	MATPWRALLM R LASQVVTLVKCLEDDDVPEEWLLLHVVQGQIGAGNNSYLRNLNHEGKIIILRMQSLRGDADLYVSDSTPHPSFDDYELQSVT CGQDVVSIPAHFQRPVGIGIYGHPSHESDFEMRVYYD W TVDPFGEAAYFTDPTGASQQAYAPEEEAAQEEESVLWTILISILKLVLEILF	Enzyme
TF	MATPWRALLMILASQVVTLVKCLEDDDVPEEWLLLHVVQGQIGAGNNSYLRNLNHEGKIIILRMQSLRGDADLYVSDSTPHPSFDDYELQSVT CGQDVVSIPAHFQRPVGIGIYGHPSHESDFEMRVYYDRTVDQYPFGE W AYF CCG WASQQAYAPEEE WWF EEESVL D TILISGLKLVLEILF	Enzyme

Actual runtime analysis

Figure: The cumulative distribution of the actual runtime required for the attack methods against XLNet-large on Yelp.

Conclusion

- ▶ We propose a *Blockwise Bayesian Attack* (BBA) framework, a **novel query-efficient and scalable black-box attack framework** based on BO.

Conclusion

- ▶ We propose a *Blockwise Bayesian Attack* (BBA) framework, a **novel query-efficient and scalable black-box attack framework** based on BO.
- ▶ We propose a post-optimization technique which can effectively reduce the perturbation size.

Conclusion

- ▶ We propose a *Blockwise Bayesian Attack* (BBA) framework, a **novel query-efficient and scalable black-box attack framework** based on BO.
- ▶ We propose a post-optimization technique which can effectively reduce the perturbation size.
- ▶ BBA achieves higher ASR with considerably less MR and fewer Qrs on all experiments we consider.

Conclusion

- ▶ We propose a *Blockwise Bayesian Attack* (BBA) framework, a **novel query-efficient and scalable black-box attack framework** based on BO.
- ▶ We propose a post-optimization technique which can effectively reduce the perturbation size.
- ▶ BBA achieves higher ASR with considerably less MR and fewer Qrs on all experiments we consider.
- ▶ Code is available at
<https://github.com/snu-mllab/DiscreteBlockBayesAttack>.

Conclusion

- ▶ We propose a *Blockwise Bayesian Attack* (BBA) framework, a **novel query-efficient and scalable black-box attack framework** based on BO.
- ▶ We propose a post-optimization technique which can effectively reduce the perturbation size.
- ▶ BBA achieves higher ASR with considerably less MR and fewer Qrs on all experiments we consider.
- ▶ Code is available at
<https://github.com/snu-mllab/DiscreteBlockBayesAttack>.
- ▶ Welcome to visit our poster session! Thank you :)

Conclusion

- ▶ We propose a *Blockwise Bayesian Attack* (BBA) framework, a **novel query-efficient and scalable black-box attack framework** based on BO.
- ▶ We propose a post-optimization technique which can effectively reduce the perturbation size.
- ▶ BBA achieves higher ASR with considerably less MR and fewer Qrs on all experiments we consider.
- ▶ Code is available at
<https://github.com/snu-mllab/DiscreteBlockBayesAttack>.
- ▶ Welcome to visit our poster session! Thank you :)