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Motivations: patient diagnosis

Diagnosing patients, Y = {'healthy’, ‘diseased’}

= m patients with access to r health indicators: heart rate, blood

pressure, chemical concentrations in blood etc
= Distribution of health indicators P;e P(R") (1 < i< m)
= Repeated measurements over time X;; ~P; (1 <t < n;)
Xi={Xi1,..., Xin} € (R)", D:={X1,..., Xn}

. Dlstrlbutlon Regressmn Learn d|rectly from

fp: P(R") — {'healthy’, ‘diseased’}

]P)new patients ? Ynew patients
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Kernel Regression versus Distribution Regression

1. Standard Regression: predict real-valued response Y from a
vector-valued covariate X € R"

2. Kernel Regression: predict real-valued response Y from a covariate
X € X on which a positive definite (p.d.) kernel exists

Distribution regression = kernel regression with X = P(R")?

= Yes. Finding a p.d. kernel on P(R") is an essential requirement

. . We do not have access to the true samples P € P(R"), only

>

:lgn 6XI,NIP),', X,NIP)
n
i=1
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= Distribution p on P(R") x Y, p(P,y) = p(y | P)p(P)
= Expected risk: f: P(R") = Y (meas.)

£0)= [ ) =y d(ey)

= Bayes estimator: f,(P) := argmin, E(f) = E[Y | P] (unknown)

= First stage sampling: (P;,y;)[, ~"9 p

n Xt,i Ni.i.d. ]Pt (1 S ¢ S T71 S i S n)
Dataset D = {((Xt,i)7:17)/t)}t7-:1

= Estimator: 7p: P(R") — Y

= Generalisation error: £(p) — E(F,) small



Kernel Distribution Regression

KDR - Kernel Distribution Regression

Consider p.d. kernel K : P(R") x P(R") — R, with RKHS H
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The Wasserstein distance
Hilbertian.



Sliced Wasserstein Kernel

1D Optimal Transport

On R, the Wasserstein distance admits a closed-form:

dw,(P,P') = (/( | (F%fll(t) - Fﬂ!}jll(t)f dt>
0,1

2



Sliced Wasserstein Kernel

1D Optimal Transport

On R, the Wasserstein distance admits a closed-form:

dw, (P, P') = (/( | (Fﬂ?”(t) - FH!,T”(t))2 dt)
0,1

2

Sliced Wasserstein distance

On R’ (r > 1), the Sliced-Wasserstein distance is:

1

: 2
dsw, (P, P') = < / dw, (042, 9#19’)20/9)
Sd—l



Theoretical Results

Under suitable assumptions, with A = max(#, ) we have

1
ni/4

o)~ €(6) < € (= + =) (Il 1)



More in the paper

= Bounds for general Hilbertian distances
= Universality

= Experiments: strong empirical performances of the Sliced
Wasserstein kernel in comparison to MMD-based kernels



