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Motivations: patient diagnosis

Diagnosing patients, Y = {‘healthy’, ‘diseased’}

• m patients with access to r health indicators: heart rate, blood
pressure, chemical concentrations in blood etc

• Distribution of health indicators ∈ P(Rr ) (1 ≤ i ≤ m)
• Repeated measurements over time (1 ≤ t ≤ ni)

Xi := {Xi,1, . . . , Xi,ni } ∈ (Rr )ni ,
•
• Distribution Regression: Learn directly from

P̂i = 1
ni

∑ni
j=1 δXi,j ≈ Pi

Goal:

f̂D : P(Rr ) −→ {‘healthy’, ‘diseased’}
P̂new patients 7−→ ynew patients
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Kernel Regression versus Distribution Regression

1. Standard Regression: predict real-valued response Y from a
vector-valued covariate X ∈ Rr

2. Kernel Regression: predict real-valued response Y from a covariate
on which a exists

Distribution regression = kernel regression with ?

• . Finding a p.d. kernel on P(Rr ) is an essential requirement
• No. We do not have access to the true samples P ∈ P(Rr ), only

P̂ = 1
n

n∑
i=1

δXi ≈ Pi , Xi ∼ P
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Problem set-up

• Distribution ρ on P(Rr ) × Y , ρ(P, y) = ρ(y | P)ρ(P)

• Expected risk: f : P(Rr ) → Y (meas.)

E(f ) =
∫

P(Rr )×Y
(f (P) − y)2dρ(P, y)

• Bayes estimator: fρ(P) := arg minf E(f ) = E[Y | P] (unknown)
• First stage sampling: (Pt , yt)T

t=1 ∼i.i.d ρ

• Second stage sampling: xt,i ∼i.i.d. Pt (1 ≤ t ≤ T , 1 ≤ i ≤ n)
Dataset D = {((xt,i)n

i=1, yt)}T
t=1

• Estimator: f̂D : P(Rr ) −→ Y
• Generalisation error: E(f̂D) − E(f̂ρ) small
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Kernel Distribution Regression

KDR - Kernel Distribution Regression

Consider p.d. kernel K : P(Rr ) × P(Rr ) → R+ with RKHS HK

ET ,n,λ(f ) := 1
T

T∑
t=1

(
f
(
P̂t,n

)
− yt

)2
+ λ∥f ∥2

HK

fD,λ := arg min
f ∈HK

ET ,n,λ(f ) = (y1, . . . , yT )(KT + λTIT )−1kP

[KT ]t,l = K (P̂t,n, P̂l,n) ∈ RT×T ,
kP = (K (P, P̂t,n), . . . , K (P, P̂T ,n))⊤ ∈ RT

How to find a p.d. kernel on P(Rr )?
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Distributional kernel

How to find a p.d. kernel on P(Rr )? Intuition: Gaussian kernel.

KGauss(x , x ′) = e−γ∥x−x ′∥2
Rr (x , x ′ ∈ Rr )

∥x − x ′∥Rr Euclidean distance.

Hilbertian distance

KGauss defines a p.d. kernel if and only if there is a Hilbert space F and
a feature map Φ : P(Rr ) → F such that

d(P,P′) = ∥Φ(P) − Φ(P′)∥F

Examples: Maximum Mean Discrepancy, Hellinger, square root Total
variation etc

What about Optimal Transport distances? The Wasserstein distance is
not Hilbertian.
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Sliced Wasserstein Kernel

1D Optimal Transport

On R, the Wasserstein distance admits a closed-form:

dW2(P,P′) =
(∫

(0,1)

(
F [−1]
P (t) − F [−1]

P′ (t)
)2

dt
) 1

2

Sliced Wasserstein distance

On Rr (r > 1), the Sliced-Wasserstein distance is:

dSW2(P,P′) =
(∫

Sd−1
dW2(θ#P, θ#P′)2dθ

) 1
2
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Theoretical Results

Under suitable assumptions, with λ = max( 1√
T , 1

n1/4 ) we have

E(f̂D,λ) − E(fρ) ≤ C
(

1√
T

+ 1
4

√
n

)(
∥fρ∥HK

+1
)
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More in the paper

• Bounds for general Hilbertian distances
• Universality
• Experiments: strong empirical performances of the Sliced

Wasserstein kernel in comparison to MMD-based kernels
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